{"title":"用于宽光谱神经调制的碲烯中的巨型红外体光电效应","authors":"Zhen Wang, Chunhua Tan, Meng Peng, Yiye Yu, Fang Zhong, Peng Wang, Ting He, Yang Wang, Zhenhan Zhang, Runzhang Xie, Fang Wang, Shuijin He, Peng Zhou, Weida Hu","doi":"10.1038/s41377-024-01640-w","DOIUrl":null,"url":null,"abstract":"<p>Given the surpassing of the Shockley-Quiesser efficiency limit in conventional p-n junction photovoltaic effect, bulk photovoltaic effect (BPVE) has garnered significant research interest. However, the BPVE primarily focuses on a narrow wavelength range, limiting its potential applications. Here we report a giant infrared bulk photovoltaic effect in tellurene (Te) for broad-spectrum neuromodulation. The generated photocurrent in uniformly illuminated Te excludes other photoelectric effects and is attributed to the BPVE. The bulk photovoltaic wavelength in Te spans a wide range from the ultraviolet (390 nm) to the mid-infrared (3.8 µm). Moreover, the photocurrent density of 70.4 A cm<sup>−2</sup> under infrared light simulation outperforms that in previous ultraviolet and visible semiconductors as well as infrared semimetals. Te attached to the dendrites or somata of the cortical neurons successfully elicit action potentials under broad-spectrum light irradiation. This work lays the foundation for the further development of infrared BPVE in narrow bandgap materials.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"22 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation\",\"authors\":\"Zhen Wang, Chunhua Tan, Meng Peng, Yiye Yu, Fang Zhong, Peng Wang, Ting He, Yang Wang, Zhenhan Zhang, Runzhang Xie, Fang Wang, Shuijin He, Peng Zhou, Weida Hu\",\"doi\":\"10.1038/s41377-024-01640-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the surpassing of the Shockley-Quiesser efficiency limit in conventional p-n junction photovoltaic effect, bulk photovoltaic effect (BPVE) has garnered significant research interest. However, the BPVE primarily focuses on a narrow wavelength range, limiting its potential applications. Here we report a giant infrared bulk photovoltaic effect in tellurene (Te) for broad-spectrum neuromodulation. The generated photocurrent in uniformly illuminated Te excludes other photoelectric effects and is attributed to the BPVE. The bulk photovoltaic wavelength in Te spans a wide range from the ultraviolet (390 nm) to the mid-infrared (3.8 µm). Moreover, the photocurrent density of 70.4 A cm<sup>−2</sup> under infrared light simulation outperforms that in previous ultraviolet and visible semiconductors as well as infrared semimetals. Te attached to the dendrites or somata of the cortical neurons successfully elicit action potentials under broad-spectrum light irradiation. This work lays the foundation for the further development of infrared BPVE in narrow bandgap materials.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01640-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01640-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
鉴于传统 p-n 结光伏效应已超过肖克利-奎塞尔效率极限,体光伏效应(BPVE)引起了人们极大的研究兴趣。然而,BPVE 主要集中在较窄的波长范围,限制了其潜在应用。在此,我们报告了碲(Te)中用于广谱神经调节的巨型红外体光伏效应。均匀照射的 Te 中产生的光电流排除了其他光电效应,归因于 BPVE。碲的主体光电波长跨度很大,从紫外线(390 纳米)到中红外线(3.8 微米)。此外,在红外光模拟下的光电流密度为 70.4 A cm-2,优于以往的紫外和可见光半导体以及红外半金属。附着在大脑皮层神经元树突或体节上的 Te 能在宽光谱光照射下成功激发动作电位。这项工作为进一步开发窄带隙材料的红外 BPVE 奠定了基础。
Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation
Given the surpassing of the Shockley-Quiesser efficiency limit in conventional p-n junction photovoltaic effect, bulk photovoltaic effect (BPVE) has garnered significant research interest. However, the BPVE primarily focuses on a narrow wavelength range, limiting its potential applications. Here we report a giant infrared bulk photovoltaic effect in tellurene (Te) for broad-spectrum neuromodulation. The generated photocurrent in uniformly illuminated Te excludes other photoelectric effects and is attributed to the BPVE. The bulk photovoltaic wavelength in Te spans a wide range from the ultraviolet (390 nm) to the mid-infrared (3.8 µm). Moreover, the photocurrent density of 70.4 A cm−2 under infrared light simulation outperforms that in previous ultraviolet and visible semiconductors as well as infrared semimetals. Te attached to the dendrites or somata of the cortical neurons successfully elicit action potentials under broad-spectrum light irradiation. This work lays the foundation for the further development of infrared BPVE in narrow bandgap materials.