Hussnain Mukhtar, Jingjie Hao, Gen Xu, Emma Bergmeyer, Musa Ulutas, Jinliang Yang, Daniel P. Schachtman
{"title":"氮输入对不同玉米品系根瘤微生物组多样性和组成的影响各不相同","authors":"Hussnain Mukhtar, Jingjie Hao, Gen Xu, Emma Bergmeyer, Musa Ulutas, Jinliang Yang, Daniel P. Schachtman","doi":"10.1007/s00374-024-01863-4","DOIUrl":null,"url":null,"abstract":"<p>Despite the crucial role of microbial communities in agroecosystem functioning, a clear picture of how nitrogen shapes rhizosphere microbial complexity and community structure across diverse maize lines remains elusive. To address this gap, we conducted 16S amplicon sequencing of the rhizosphere microbial communities across a diverse range of maize inbred lines (305 genotypes) and their F1 hybrids (196 genotypes) cultivated in both low-nitrogen (unfertilized) and high-nitrogen (fertilized) soils. Our findings reveal that N fertilizer treatment had contrasting effects on the rhizosphere microbial communities of inbreds and hybrids. N fertilization increased alpha diversity but decreased the abundance of <i>Pseudomonas</i> taxa in inbred lines, while the opposite was true for hybrids. The proportion of variance determined by plant host factors was also better explained under low-N, demonstrating that N fertilization reduced the influence of the host over the rhizosphere microbial community. Microbial networks revealed significant differences in the number of nodes and clustering coefficients between the rhizosphere microbial communities of inbred and hybrid maize, with these differences being further differentiated by changes in nitrogen levels. Overall, our study reveals the interplay among rhizosphere microbiomes, abiotic stress induced by low soil nitrogen, and plant host factors facilitating the identification of stable microbial communities in response to environmental stress. These findings contribute to the potential engineering of resilient microbial consortia highlighting the importance of the influence of plant genotype and the environment on the rhizosphere microbiome.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen input differentially shapes the rhizosphere microbiome diversity and composition across diverse maize lines\",\"authors\":\"Hussnain Mukhtar, Jingjie Hao, Gen Xu, Emma Bergmeyer, Musa Ulutas, Jinliang Yang, Daniel P. Schachtman\",\"doi\":\"10.1007/s00374-024-01863-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite the crucial role of microbial communities in agroecosystem functioning, a clear picture of how nitrogen shapes rhizosphere microbial complexity and community structure across diverse maize lines remains elusive. To address this gap, we conducted 16S amplicon sequencing of the rhizosphere microbial communities across a diverse range of maize inbred lines (305 genotypes) and their F1 hybrids (196 genotypes) cultivated in both low-nitrogen (unfertilized) and high-nitrogen (fertilized) soils. Our findings reveal that N fertilizer treatment had contrasting effects on the rhizosphere microbial communities of inbreds and hybrids. N fertilization increased alpha diversity but decreased the abundance of <i>Pseudomonas</i> taxa in inbred lines, while the opposite was true for hybrids. The proportion of variance determined by plant host factors was also better explained under low-N, demonstrating that N fertilization reduced the influence of the host over the rhizosphere microbial community. Microbial networks revealed significant differences in the number of nodes and clustering coefficients between the rhizosphere microbial communities of inbred and hybrid maize, with these differences being further differentiated by changes in nitrogen levels. Overall, our study reveals the interplay among rhizosphere microbiomes, abiotic stress induced by low soil nitrogen, and plant host factors facilitating the identification of stable microbial communities in response to environmental stress. These findings contribute to the potential engineering of resilient microbial consortia highlighting the importance of the influence of plant genotype and the environment on the rhizosphere microbiome.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01863-4\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01863-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
尽管微生物群落在农业生态系统的功能中起着至关重要的作用,但要清楚地了解氮是如何影响不同玉米品系的根瘤微生物复杂性和群落结构的,仍然是一个未知数。为了填补这一空白,我们对在低氮(未施肥)和高氮(施肥)土壤中栽培的各种玉米近交系(305 个基因型)及其 F1 代杂交种(196 个基因型)的根瘤微生物群落进行了 16S 扩增子测序。我们的研究结果表明,氮肥处理对近交系和杂交种根瘤微生物群落的影响截然不同。施用氮肥增加了近交系的α多样性,但降低了假单胞菌类群的丰度,而杂交种的情况恰恰相反。在低氮条件下,由植物宿主因素决定的变异比例也得到了更好的解释,这表明氮肥减少了宿主对根瘤微生物群落的影响。微生物网络显示,近交玉米和杂交玉米的根瘤微生物群落在节点数量和聚类系数上存在显著差异,氮水平的变化进一步区分了这些差异。总之,我们的研究揭示了根瘤微生物群落、土壤低氮诱导的非生物胁迫和植物宿主因素之间的相互作用,有助于识别稳定的微生物群落以应对环境胁迫。这些发现有助于潜在的弹性微生物群工程学,突出了植物基因型和环境对根圈微生物群影响的重要性。
Nitrogen input differentially shapes the rhizosphere microbiome diversity and composition across diverse maize lines
Despite the crucial role of microbial communities in agroecosystem functioning, a clear picture of how nitrogen shapes rhizosphere microbial complexity and community structure across diverse maize lines remains elusive. To address this gap, we conducted 16S amplicon sequencing of the rhizosphere microbial communities across a diverse range of maize inbred lines (305 genotypes) and their F1 hybrids (196 genotypes) cultivated in both low-nitrogen (unfertilized) and high-nitrogen (fertilized) soils. Our findings reveal that N fertilizer treatment had contrasting effects on the rhizosphere microbial communities of inbreds and hybrids. N fertilization increased alpha diversity but decreased the abundance of Pseudomonas taxa in inbred lines, while the opposite was true for hybrids. The proportion of variance determined by plant host factors was also better explained under low-N, demonstrating that N fertilization reduced the influence of the host over the rhizosphere microbial community. Microbial networks revealed significant differences in the number of nodes and clustering coefficients between the rhizosphere microbial communities of inbred and hybrid maize, with these differences being further differentiated by changes in nitrogen levels. Overall, our study reveals the interplay among rhizosphere microbiomes, abiotic stress induced by low soil nitrogen, and plant host factors facilitating the identification of stable microbial communities in response to environmental stress. These findings contribute to the potential engineering of resilient microbial consortia highlighting the importance of the influence of plant genotype and the environment on the rhizosphere microbiome.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.