Ezra A. Baghdady, J. Will Medlin, Daniel K. Schwartz
{"title":"用甲酸和其他氧气清除剂增强以过氧化氢为燃料的活性粒子的自推进运动","authors":"Ezra A. Baghdady, J. Will Medlin, Daniel K. Schwartz","doi":"10.1021/acs.langmuir.4c02482","DOIUrl":null,"url":null,"abstract":"We report enhanced active particle motion in hydrogen peroxide-fueled self-diffusiophoretic active particle systems of up to 400% via addition of low concentrations of oxygen scavenging agents such as formic acid (as well as other organic acids, hydrazine, and citric acid), whereas active motion was inhibited at higher concentrations. Control experiments showed that enhanced motion was decoupled from catalytic hydrogen peroxide decomposition rate and insensitive to particle surface chemistry. Experimental results point to bulk oxygen scavenging as the cause for the enhanced active motion, representing a realization of recently predicted promotional effects of product sinks on self-diffusiophoretic motion. Diminished active motion at high oxygen scavenger concentrations was attributed to catalytic site blocking by adsorbed solute.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"13 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Self-Propelled Motion of Hydrogen Peroxide Fueled Active Particles with Formic Acid and Other Oxygen Scavengers\",\"authors\":\"Ezra A. Baghdady, J. Will Medlin, Daniel K. Schwartz\",\"doi\":\"10.1021/acs.langmuir.4c02482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report enhanced active particle motion in hydrogen peroxide-fueled self-diffusiophoretic active particle systems of up to 400% via addition of low concentrations of oxygen scavenging agents such as formic acid (as well as other organic acids, hydrazine, and citric acid), whereas active motion was inhibited at higher concentrations. Control experiments showed that enhanced motion was decoupled from catalytic hydrogen peroxide decomposition rate and insensitive to particle surface chemistry. Experimental results point to bulk oxygen scavenging as the cause for the enhanced active motion, representing a realization of recently predicted promotional effects of product sinks on self-diffusiophoretic motion. Diminished active motion at high oxygen scavenger concentrations was attributed to catalytic site blocking by adsorbed solute.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02482\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02482","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the Self-Propelled Motion of Hydrogen Peroxide Fueled Active Particles with Formic Acid and Other Oxygen Scavengers
We report enhanced active particle motion in hydrogen peroxide-fueled self-diffusiophoretic active particle systems of up to 400% via addition of low concentrations of oxygen scavenging agents such as formic acid (as well as other organic acids, hydrazine, and citric acid), whereas active motion was inhibited at higher concentrations. Control experiments showed that enhanced motion was decoupled from catalytic hydrogen peroxide decomposition rate and insensitive to particle surface chemistry. Experimental results point to bulk oxygen scavenging as the cause for the enhanced active motion, representing a realization of recently predicted promotional effects of product sinks on self-diffusiophoretic motion. Diminished active motion at high oxygen scavenger concentrations was attributed to catalytic site blocking by adsorbed solute.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).