James Davies, Mai Thanh Thai, Bibhu Sharma, Trung Thien Hoang, Chi Cong Nguyen, Phuoc Thien Phan, Thao Nhu Anne Marie Vuong, Adrienne Ji, Kefan Zhu, Emanuele Nicotra, Yi-Chin Toh, Michael Stevens, Christopher Hayward, Hoang-Phuong Phan, Nigel Hamilton Lovell, Thanh Nho Do
{"title":"能够再现心肌生物力学的软机器人人工左心室模拟器","authors":"James Davies, Mai Thanh Thai, Bibhu Sharma, Trung Thien Hoang, Chi Cong Nguyen, Phuoc Thien Phan, Thao Nhu Anne Marie Vuong, Adrienne Ji, Kefan Zhu, Emanuele Nicotra, Yi-Chin Toh, Michael Stevens, Christopher Hayward, Hoang-Phuong Phan, Nigel Hamilton Lovell, Thanh Nho Do","doi":"10.1126/scirobotics.ado4553","DOIUrl":null,"url":null,"abstract":"<div >The heart’s intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device’s ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device’s ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 94","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics\",\"authors\":\"James Davies, Mai Thanh Thai, Bibhu Sharma, Trung Thien Hoang, Chi Cong Nguyen, Phuoc Thien Phan, Thao Nhu Anne Marie Vuong, Adrienne Ji, Kefan Zhu, Emanuele Nicotra, Yi-Chin Toh, Michael Stevens, Christopher Hayward, Hoang-Phuong Phan, Nigel Hamilton Lovell, Thanh Nho Do\",\"doi\":\"10.1126/scirobotics.ado4553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The heart’s intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device’s ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device’s ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"9 94\",\"pages\":\"\"},\"PeriodicalIF\":26.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.ado4553\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.ado4553","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics
The heart’s intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device’s ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device’s ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.