Sayak Ray, J. D. Huba, Bhaskar Kundu, Shuanggen Jin
{"title":"2023 年 10 月 14 日火环日环食对电离层的影响:全球导航卫星系统观测数据与 SAMI3 模型预测之间的比较","authors":"Sayak Ray, J. D. Huba, Bhaskar Kundu, Shuanggen Jin","doi":"10.1029/2024JA032710","DOIUrl":null,"url":null,"abstract":"<p>Celestial phenomena such as solar eclipses disrupt the ionosphere's inherent photochemical, dynamic, and electrodynamic processes and can be viewed as a natural experiment that provides a unique opportunity to study ionospheric perturbations. We investigate the spatiotemporal ionospheric response induced by the 14 October 2023 annular eclipse using ground-based Global Navigation Satellite System (GNSS) receivers located over the continental region of North and South America. The largest total electron content (TEC) change (∼22 TECU decrease) is observed over the path of the eclipse at around 16°–18°N which lies just before the greatest eclipse location. However, the percentage change in TEC here is ∼44% (of the background value), which is less than that observed at midlatitudes around 30°–35°N (∼18.7 TECU, ∼50%). We observed a latitudinal dependency of TEC variation and time delay in ionospheric response to the eclipse with midlatitudes experiencing greater TEC changes and longer time delays compared to low-latitude and equatorial regions. The SAMI3 model used to simulate the impact of the eclipse, captures the large decrease in VTEC along the eclipse path. Interestingly, increases in the TEC are also observed in several GNSS sites and it varied from 4.5 to 6.5 TECU in the Northern Hemisphere and 7 to 12 TECU in the Southern Hemisphere. The SAMI3 model results also show an enhancement in TEC but significantly less than that observed. Moreover, the SAMI3 model simulations for individual GNSS site coordinates within the conjugate regions failed to predict accurately, the TEC enhancement recorded by the GNSS sites.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the October 14, 2023, Ring of Fire Annular Eclipse on the Ionosphere: A Comparison Between GNSS Observations and SAMI3 Model Prediction\",\"authors\":\"Sayak Ray, J. D. Huba, Bhaskar Kundu, Shuanggen Jin\",\"doi\":\"10.1029/2024JA032710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Celestial phenomena such as solar eclipses disrupt the ionosphere's inherent photochemical, dynamic, and electrodynamic processes and can be viewed as a natural experiment that provides a unique opportunity to study ionospheric perturbations. We investigate the spatiotemporal ionospheric response induced by the 14 October 2023 annular eclipse using ground-based Global Navigation Satellite System (GNSS) receivers located over the continental region of North and South America. The largest total electron content (TEC) change (∼22 TECU decrease) is observed over the path of the eclipse at around 16°–18°N which lies just before the greatest eclipse location. However, the percentage change in TEC here is ∼44% (of the background value), which is less than that observed at midlatitudes around 30°–35°N (∼18.7 TECU, ∼50%). We observed a latitudinal dependency of TEC variation and time delay in ionospheric response to the eclipse with midlatitudes experiencing greater TEC changes and longer time delays compared to low-latitude and equatorial regions. The SAMI3 model used to simulate the impact of the eclipse, captures the large decrease in VTEC along the eclipse path. Interestingly, increases in the TEC are also observed in several GNSS sites and it varied from 4.5 to 6.5 TECU in the Northern Hemisphere and 7 to 12 TECU in the Southern Hemisphere. The SAMI3 model results also show an enhancement in TEC but significantly less than that observed. Moreover, the SAMI3 model simulations for individual GNSS site coordinates within the conjugate regions failed to predict accurately, the TEC enhancement recorded by the GNSS sites.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032710\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032710","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Influence of the October 14, 2023, Ring of Fire Annular Eclipse on the Ionosphere: A Comparison Between GNSS Observations and SAMI3 Model Prediction
Celestial phenomena such as solar eclipses disrupt the ionosphere's inherent photochemical, dynamic, and electrodynamic processes and can be viewed as a natural experiment that provides a unique opportunity to study ionospheric perturbations. We investigate the spatiotemporal ionospheric response induced by the 14 October 2023 annular eclipse using ground-based Global Navigation Satellite System (GNSS) receivers located over the continental region of North and South America. The largest total electron content (TEC) change (∼22 TECU decrease) is observed over the path of the eclipse at around 16°–18°N which lies just before the greatest eclipse location. However, the percentage change in TEC here is ∼44% (of the background value), which is less than that observed at midlatitudes around 30°–35°N (∼18.7 TECU, ∼50%). We observed a latitudinal dependency of TEC variation and time delay in ionospheric response to the eclipse with midlatitudes experiencing greater TEC changes and longer time delays compared to low-latitude and equatorial regions. The SAMI3 model used to simulate the impact of the eclipse, captures the large decrease in VTEC along the eclipse path. Interestingly, increases in the TEC are also observed in several GNSS sites and it varied from 4.5 to 6.5 TECU in the Northern Hemisphere and 7 to 12 TECU in the Southern Hemisphere. The SAMI3 model results also show an enhancement in TEC but significantly less than that observed. Moreover, the SAMI3 model simulations for individual GNSS site coordinates within the conjugate regions failed to predict accurately, the TEC enhancement recorded by the GNSS sites.