F q ( t ) $\mathbb {F}_q(t)$ 上三次方和二次方超曲面完全交点上的有理点

IF 1 2区 数学 Q1 MATHEMATICS
Jakob Glas
{"title":"F q ( t ) $\\mathbb {F}_q(t)$ 上三次方和二次方超曲面完全交点上的有理点","authors":"Jakob Glas","doi":"10.1112/jlms.12991","DOIUrl":null,"url":null,"abstract":"<p>Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {F}_q(t)$</annotation>\n </semantics></math>, provided <span></span><math>\n <semantics>\n <mrow>\n <mo>char</mo>\n <mo>(</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mo>)</mo>\n <mo>&gt;</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\operatorname{char}(\\mathbb {F}_q)&amp;gt;3$</annotation>\n </semantics></math>. Under the same hypotheses, we also verify weak approximation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12991","citationCount":"0","resultStr":"{\"title\":\"Rational points on complete intersections of cubic and quadric hypersurfaces over \\n \\n \\n \\n F\\n q\\n \\n \\n (\\n t\\n )\\n \\n \\n $\\\\mathbb {F}_q(t)$\",\"authors\":\"Jakob Glas\",\"doi\":\"10.1112/jlms.12991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathbb {F}_q(t)$</annotation>\\n </semantics></math>, provided <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>char</mo>\\n <mo>(</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mo>)</mo>\\n <mo>&gt;</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\operatorname{char}(\\\\mathbb {F}_q)&amp;gt;3$</annotation>\\n </semantics></math>. Under the same hypotheses, we also verify weak approximation.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"110 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12991\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12991\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12991","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用德尔塔法的二维版本,我们建立了维数至少为 23 over F q ( t ) $\mathbb {F}_q(t)$,条件为 char ( F q ) > 3 $\operatorname{char}(\mathbb {F}_q)&gt;3$的立方超曲面和二次超曲面的非奇异完全交点上有界高的有理点数的渐近公式。在同样的假设下,我们也验证了弱逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rational points on complete intersections of cubic and quadric hypersurfaces over F q ( t ) $\mathbb {F}_q(t)$

Using a two-dimensional version of the delta method, we establish an asymptotic formula for the number of rational points of bounded height on non-singular complete intersections of cubic and quadric hypersurfaces of dimension at least 23 over F q ( t ) $\mathbb {F}_q(t)$ , provided char ( F q ) > 3 $\operatorname{char}(\mathbb {F}_q)&gt;3$ . Under the same hypotheses, we also verify weak approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信