{"title":"具有逻辑增长的趋化系统的有界性","authors":"Qian Zhang , Yonghong Wu , Peiguang Wang","doi":"10.1016/j.jde.2024.09.040","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a mathematical model motivated by the studies of coral broadcast spawning<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>n</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>Δ</mi><mi>n</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>∇</mi><mi>c</mi><mo>)</mo><mo>+</mo><mi>n</mi><mo>−</mo><mi>ϵ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>c</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>−</mo><mi>Δ</mi><mi>c</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>c</mi><mo>+</mo><mi>n</mi></mtd></mtr></mtable></mrow><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, and <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>. We establish global-in-time well-posedness and boundedness of the solution to the Cauchy problem of this system by developing local-in-space estimates. The crux point of our proof depends intensely on localization in the space of solutions induced by “local effect” of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-norm.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness for the chemotaxis system with logistic growth\",\"authors\":\"Qian Zhang , Yonghong Wu , Peiguang Wang\",\"doi\":\"10.1016/j.jde.2024.09.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a mathematical model motivated by the studies of coral broadcast spawning<span><span><span><math><mrow><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>n</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>n</mi><mo>−</mo><mi>Δ</mi><mi>n</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>n</mi><mi>∇</mi><mi>c</mi><mo>)</mo><mo>+</mo><mi>n</mi><mo>−</mo><mi>ϵ</mi><msup><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msup></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>c</mi><mo>+</mo><mi>u</mi><mo>⋅</mo><mi>∇</mi><mi>c</mi><mo>−</mo><mi>Δ</mi><mi>c</mi></mtd><mtd><mo>=</mo><mo>−</mo><mi>c</mi><mo>+</mo><mi>n</mi></mtd></mtr></mtable></mrow><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><mi>d</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>, <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, and <span><math><mi>q</mi><mo>≥</mo><mn>2</mn></math></span>. We establish global-in-time well-posedness and boundedness of the solution to the Cauchy problem of this system by developing local-in-space estimates. The crux point of our proof depends intensely on localization in the space of solutions induced by “local effect” of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>-norm.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006259\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006259","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了一个由珊瑚广播产卵研究激发的数学模型{∂tn+u⋅∇n-Δn=-χ∇⋅(n∇c)+n-ϵnq∂tc+u⋅∇c-Δc=-c+n in Rd×R+,其中 d=2,3,ϵ>0,q≥2。我们通过建立局部空间估计,建立了该系统的考希问题解的全局时间拟合性和有界性。我们证明的关键点主要取决于 L∞(Rd)-norm 的 "局部效应 "所引起的解空间的局部性。
Boundedness for the chemotaxis system with logistic growth
In this paper, we consider a mathematical model motivated by the studies of coral broadcast spawning where , , and . We establish global-in-time well-posedness and boundedness of the solution to the Cauchy problem of this system by developing local-in-space estimates. The crux point of our proof depends intensely on localization in the space of solutions induced by “local effect” of the -norm.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics