{"title":"诺维科夫方程 b 族的峰子谱不稳定性","authors":"Xijun Deng , Stéphane Lafortune","doi":"10.1016/j.jde.2024.09.031","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are concerned with a one-parameter family of peakon equations with cubic nonlinearity parametrized by a parameter usually denoted by the letter <em>b</em>. This family is called the “<em>b</em>-Novikov” since it reduces to the integrable Novikov equation in the case <span><math><mi>b</mi><mo>=</mo><mn>3</mn></math></span>. By extending the corresponding linearized operator defined on functions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to one defined on weaker functions on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, we prove spectral and linear instability on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of peakons in the <em>b</em>-Novikov equations for any <em>b</em>. We also consider the stability on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and show that the peakons are spectrally or linearly stable only in the case <span><math><mi>b</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral instability of peakons for the b-family of Novikov equations\",\"authors\":\"Xijun Deng , Stéphane Lafortune\",\"doi\":\"10.1016/j.jde.2024.09.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we are concerned with a one-parameter family of peakon equations with cubic nonlinearity parametrized by a parameter usually denoted by the letter <em>b</em>. This family is called the “<em>b</em>-Novikov” since it reduces to the integrable Novikov equation in the case <span><math><mi>b</mi><mo>=</mo><mn>3</mn></math></span>. By extending the corresponding linearized operator defined on functions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> to one defined on weaker functions on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span>, we prove spectral and linear instability on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> of peakons in the <em>b</em>-Novikov equations for any <em>b</em>. We also consider the stability on <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> and show that the peakons are spectrally or linearly stable only in the case <span><math><mi>b</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400617X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400617X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们关注的是具有立方非线性参数的峰值子方程的一参数族,其参数通常用字母 b 表示。这个族被称为 "b-Novikov",因为它在 b=3 的情况下简化为可积分的 Novikov 方程。通过将定义在 H1(R) 中函数上的相应线性化算子扩展到定义在 L2(R) 上较弱函数上的算子,我们证明了 b-Novikov 方程中任何 b 的峰值子在 L2(R) 上的谱和线性不稳定性。
Spectral instability of peakons for the b-family of Novikov equations
In this paper, we are concerned with a one-parameter family of peakon equations with cubic nonlinearity parametrized by a parameter usually denoted by the letter b. This family is called the “b-Novikov” since it reduces to the integrable Novikov equation in the case . By extending the corresponding linearized operator defined on functions in to one defined on weaker functions on , we prove spectral and linear instability on of peakons in the b-Novikov equations for any b. We also consider the stability on and show that the peakons are spectrally or linearly stable only in the case .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics