用于电催化二氧化碳还原的无定形氧化物的研究进展

Youcai Meng , Junyang Ding , Yifan Liu , Guangzhi Hu , Yanhong Feng , Yinghong Wu , Xijun Liu
{"title":"用于电催化二氧化碳还原的无定形氧化物的研究进展","authors":"Youcai Meng ,&nbsp;Junyang Ding ,&nbsp;Yifan Liu ,&nbsp;Guangzhi Hu ,&nbsp;Yanhong Feng ,&nbsp;Yinghong Wu ,&nbsp;Xijun Liu","doi":"10.1016/j.mtcata.2024.100065","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic CO<sub>2</sub> reduction (ECR) is a crucial energy conversion technology that transforms CO<sub>2</sub> into value-added chemicals, reducing reliance on fossil fuels and advancing energy transitions. Designing high-performance catalysts is pivotal for widespread adoption of CO<sub>2</sub> reduction reactions, aiming for high activity, selectivity, and stability. Amorphous oxides represent a burgeoning frontier in this field, attracting attention due to their abundant active sites that refine the catalyst structure-performance relationship. This paper aims to provide an overview of recent advances in using amorphous oxides for ECR. We begin by introducing the basic theory of electrocatalytic CO<sub>2</sub> reduction, followed by discussing current synthesis approaches for amorphous oxides in CO<sub>2</sub> reduction, focusing on optimization strategies for these catalysts. Finally, we address challenges and future perspectives of amorphous oxides in ECR, aiming to foster the development of more efficient catalyst designs.</div></div>","PeriodicalId":100892,"journal":{"name":"Materials Today Catalysis","volume":"7 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Amorphous Oxides For Electrocatalytic Carbon Dioxide Reduction\",\"authors\":\"Youcai Meng ,&nbsp;Junyang Ding ,&nbsp;Yifan Liu ,&nbsp;Guangzhi Hu ,&nbsp;Yanhong Feng ,&nbsp;Yinghong Wu ,&nbsp;Xijun Liu\",\"doi\":\"10.1016/j.mtcata.2024.100065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrocatalytic CO<sub>2</sub> reduction (ECR) is a crucial energy conversion technology that transforms CO<sub>2</sub> into value-added chemicals, reducing reliance on fossil fuels and advancing energy transitions. Designing high-performance catalysts is pivotal for widespread adoption of CO<sub>2</sub> reduction reactions, aiming for high activity, selectivity, and stability. Amorphous oxides represent a burgeoning frontier in this field, attracting attention due to their abundant active sites that refine the catalyst structure-performance relationship. This paper aims to provide an overview of recent advances in using amorphous oxides for ECR. We begin by introducing the basic theory of electrocatalytic CO<sub>2</sub> reduction, followed by discussing current synthesis approaches for amorphous oxides in CO<sub>2</sub> reduction, focusing on optimization strategies for these catalysts. Finally, we address challenges and future perspectives of amorphous oxides in ECR, aiming to foster the development of more efficient catalyst designs.</div></div>\",\"PeriodicalId\":100892,\"journal\":{\"name\":\"Materials Today Catalysis\",\"volume\":\"7 \",\"pages\":\"Article 100065\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949754X24000279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949754X24000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电催化二氧化碳还原(ECR)是一项重要的能源转换技术,可将二氧化碳转化为高附加值的化学品,从而减少对化石燃料的依赖,推动能源转型。设计高性能催化剂对于二氧化碳还原反应的广泛应用至关重要,其目标是实现高活性、高选择性和高稳定性。无定形氧化物是这一领域的新兴前沿,因其丰富的活性位点可完善催化剂的结构-性能关系而备受关注。本文旨在概述将非晶氧化物用于 ECR 的最新进展。我们首先介绍了电催化二氧化碳还原的基本理论,然后讨论了当前二氧化碳还原中非晶氧化物的合成方法,重点介绍了这些催化剂的优化策略。最后,我们探讨了非晶氧化物在 ECR 中的应用所面临的挑战和未来展望,旨在促进更高效催化剂设计的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements in Amorphous Oxides For Electrocatalytic Carbon Dioxide Reduction
Electrocatalytic CO2 reduction (ECR) is a crucial energy conversion technology that transforms CO2 into value-added chemicals, reducing reliance on fossil fuels and advancing energy transitions. Designing high-performance catalysts is pivotal for widespread adoption of CO2 reduction reactions, aiming for high activity, selectivity, and stability. Amorphous oxides represent a burgeoning frontier in this field, attracting attention due to their abundant active sites that refine the catalyst structure-performance relationship. This paper aims to provide an overview of recent advances in using amorphous oxides for ECR. We begin by introducing the basic theory of electrocatalytic CO2 reduction, followed by discussing current synthesis approaches for amorphous oxides in CO2 reduction, focusing on optimization strategies for these catalysts. Finally, we address challenges and future perspectives of amorphous oxides in ECR, aiming to foster the development of more efficient catalyst designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信