{"title":"指数弱型估计下临界索波列夫映射的奇异扩展","authors":"Bohdan Bulanyi , Jean Van Schaftingen","doi":"10.1016/j.jfa.2024.110681","DOIUrl":null,"url":null,"abstract":"<div><div>Given <span><math><mi>m</mi><mo>∈</mo><mi>N</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and a compact Riemannian manifold <span><math><mi>N</mi></math></span>, we construct for every map <em>u</em> in the critical Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>m</mi><mo>/</mo><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>,</mo><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, a map <span><math><mi>U</mi><mo>:</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>→</mo><mi>N</mi></math></span> whose trace is <em>u</em> and which satisfies an exponential weak-type Sobolev estimate. The result and its proof carry on to the extension to a half-space of maps on its boundary hyperplane and to the extension to the hyperbolic space of maps on its boundary sphere at infinity.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular extension of critical Sobolev mappings under an exponential weak-type estimate\",\"authors\":\"Bohdan Bulanyi , Jean Van Schaftingen\",\"doi\":\"10.1016/j.jfa.2024.110681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given <span><math><mi>m</mi><mo>∈</mo><mi>N</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and a compact Riemannian manifold <span><math><mi>N</mi></math></span>, we construct for every map <em>u</em> in the critical Sobolev space <span><math><msup><mrow><mi>W</mi></mrow><mrow><mi>m</mi><mo>/</mo><mo>(</mo><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>,</mo><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>)</mo></math></span>, a map <span><math><mi>U</mi><mo>:</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>→</mo><mi>N</mi></math></span> whose trace is <em>u</em> and which satisfies an exponential weak-type Sobolev estimate. The result and its proof carry on to the extension to a half-space of maps on its boundary hyperplane and to the extension to the hyperbolic space of maps on its boundary sphere at infinity.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003690\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003690","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定 m∈N∖{0} 和一个紧凑的黎曼流形 N,我们为临界索波列夫空间 Wm/(m+1),m+1(Sm,N)中的每一个映射 u 构建一个映射 U:B1m+1→N,其迹线为 u 并且满足指数弱型索波列夫估计。该结果及其证明可延伸至边界超平面上映射的半空间,以及边界球面上映射的无穷远处的双曲空间。
Singular extension of critical Sobolev mappings under an exponential weak-type estimate
Given and a compact Riemannian manifold , we construct for every map u in the critical Sobolev space , a map whose trace is u and which satisfies an exponential weak-type Sobolev estimate. The result and its proof carry on to the extension to a half-space of maps on its boundary hyperplane and to the extension to the hyperbolic space of maps on its boundary sphere at infinity.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis