{"title":"利用移动式宇宙射线中子传感技术在青藏高原东部进行漫游车沿线中尺度土壤水分测量","authors":"Yongyong Zhang , Shaoxiong Wu , Wenzhi Zhao , Jianhua Xiao","doi":"10.1016/j.geoderma.2024.117046","DOIUrl":null,"url":null,"abstract":"<div><div>Water resources in the soil play an essential role in hydrological processes and ecosystem functions on the Tibetan Plateau. However, accurately measuring soil moisture distribution in this region presents challenges due to the diverse ecosystem types, complex terrain, and harsh environmental conditions. In this study, we introduce an approach for estimating mesoscale soil moisture in the Qilian Mountains (QLM) region of the eastern Tibetan Plateau using a cosmic-ray neutron rover. Soil moisture estimates derived from neutron count rates, newly adjusted by vegetation effects, demonstrated good agreement with soil moisture measurements obtained through soil sampling at 26 calibration sites across the region (RMSE = 0.025 g g<sup>−1</sup>). The calibration parameter N<sub>0</sub>_NDVI was 443 cpm in the QLM. Utilizing NDVI as vegetation correction method showed potential improvements in the accuracy of converting neutron counts to soil moisture across the diverse mountainous ecosystem types. The newly developed calibration equation provided a high-precision, high spatial resolution soil moisture transect across various landscapes measured by the rover. The average mesoscale soil moisture along the rover route varied by ecosystem types, with values of 0.10 g/g in deserts, 0.17 g/g in grasslands, 0.13 g/g in forests, 0.18 g/g in subalpine shrublands, and 0.20 g/g in croplands. Land cover types emerged as crucial determinants of mesoscale soil moisture variability in the QLM region. These findings offer valuable mesoscale soil moisture data and new insights into soil water information at the transect scale across diverse ecosystem types in the Tibetan Plateau.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscale soil moisture measurements along the rover route using the mobile cosmic-ray neutron sensing in the eastern Tibetan Plateau\",\"authors\":\"Yongyong Zhang , Shaoxiong Wu , Wenzhi Zhao , Jianhua Xiao\",\"doi\":\"10.1016/j.geoderma.2024.117046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Water resources in the soil play an essential role in hydrological processes and ecosystem functions on the Tibetan Plateau. However, accurately measuring soil moisture distribution in this region presents challenges due to the diverse ecosystem types, complex terrain, and harsh environmental conditions. In this study, we introduce an approach for estimating mesoscale soil moisture in the Qilian Mountains (QLM) region of the eastern Tibetan Plateau using a cosmic-ray neutron rover. Soil moisture estimates derived from neutron count rates, newly adjusted by vegetation effects, demonstrated good agreement with soil moisture measurements obtained through soil sampling at 26 calibration sites across the region (RMSE = 0.025 g g<sup>−1</sup>). The calibration parameter N<sub>0</sub>_NDVI was 443 cpm in the QLM. Utilizing NDVI as vegetation correction method showed potential improvements in the accuracy of converting neutron counts to soil moisture across the diverse mountainous ecosystem types. The newly developed calibration equation provided a high-precision, high spatial resolution soil moisture transect across various landscapes measured by the rover. The average mesoscale soil moisture along the rover route varied by ecosystem types, with values of 0.10 g/g in deserts, 0.17 g/g in grasslands, 0.13 g/g in forests, 0.18 g/g in subalpine shrublands, and 0.20 g/g in croplands. Land cover types emerged as crucial determinants of mesoscale soil moisture variability in the QLM region. These findings offer valuable mesoscale soil moisture data and new insights into soil water information at the transect scale across diverse ecosystem types in the Tibetan Plateau.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706124002751\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706124002751","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Mesoscale soil moisture measurements along the rover route using the mobile cosmic-ray neutron sensing in the eastern Tibetan Plateau
Water resources in the soil play an essential role in hydrological processes and ecosystem functions on the Tibetan Plateau. However, accurately measuring soil moisture distribution in this region presents challenges due to the diverse ecosystem types, complex terrain, and harsh environmental conditions. In this study, we introduce an approach for estimating mesoscale soil moisture in the Qilian Mountains (QLM) region of the eastern Tibetan Plateau using a cosmic-ray neutron rover. Soil moisture estimates derived from neutron count rates, newly adjusted by vegetation effects, demonstrated good agreement with soil moisture measurements obtained through soil sampling at 26 calibration sites across the region (RMSE = 0.025 g g−1). The calibration parameter N0_NDVI was 443 cpm in the QLM. Utilizing NDVI as vegetation correction method showed potential improvements in the accuracy of converting neutron counts to soil moisture across the diverse mountainous ecosystem types. The newly developed calibration equation provided a high-precision, high spatial resolution soil moisture transect across various landscapes measured by the rover. The average mesoscale soil moisture along the rover route varied by ecosystem types, with values of 0.10 g/g in deserts, 0.17 g/g in grasslands, 0.13 g/g in forests, 0.18 g/g in subalpine shrublands, and 0.20 g/g in croplands. Land cover types emerged as crucial determinants of mesoscale soil moisture variability in the QLM region. These findings offer valuable mesoscale soil moisture data and new insights into soil water information at the transect scale across diverse ecosystem types in the Tibetan Plateau.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.