Homayoun Asadzadeh , Scott Renkes , MinJun Kim , George Alexandrakis
{"title":"20 纳米二氧化硅纳米颗粒上的双纳米孔等离子纳米孔传感器进行交流测量的计算和实验研究","authors":"Homayoun Asadzadeh , Scott Renkes , MinJun Kim , George Alexandrakis","doi":"10.1016/j.sbsr.2024.100694","DOIUrl":null,"url":null,"abstract":"<div><div>A novel method of AC sensing is presented that uses a double nanohole (DNH) nanoaperture atop a solid-state nanopore (ssNP) to trap analytes and measure their optical and electrical properties. In this method analytes are propelled by an external applied voltage towards the sensor until they are trapped at the DNH-ssNP interface via a self-induced back action (SIBA) plasmonic force. We have previously named this method SIBA Actuated Nanopore Electrophoresis (SANE) sensing and have shown its ability to perform concurrent optical and DC electrical measurements. Here, we extend this method to AC sensing of 20 nm SiO<sub>2</sub> (silica) nanoparticles, using voltage modulation over a wide range of frequencies applied on top of a baseline DC bias. The sensor was constructed using two-beam GFIS Focused Ion Beam (FIB) lithography, incorporating Ne FIB to mill the DNH and He FIB to drill a central 30 nm ssNP. We utilized COMSOL Multiphysics simulations to explore the multi-frequency AC current conductance properties of the silica nanoparticles trapped at the SANE sensor. These simulations computed conductance changes and phase shifts induced by the presence of the nanoparticle over an AC frequency range of 20 Hz to 100 kHz. Experimental measurements confirmed the trends seen in the computational data. Additional computational studies were then performed to dissect the underlying mechanisms driving the observed AC measurements. Looking forward, we aim to adapt this technology for probing therapeutic nanoparticles non-invasively, offering a promising tool for enhancing quality control of nanoparticle-mediated drug and gene delivery systems.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100694"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational and experimental study of AC measurements performed by a double-nanohole plasmonic nanopore sensor on 20 nm silica nanoparticles\",\"authors\":\"Homayoun Asadzadeh , Scott Renkes , MinJun Kim , George Alexandrakis\",\"doi\":\"10.1016/j.sbsr.2024.100694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel method of AC sensing is presented that uses a double nanohole (DNH) nanoaperture atop a solid-state nanopore (ssNP) to trap analytes and measure their optical and electrical properties. In this method analytes are propelled by an external applied voltage towards the sensor until they are trapped at the DNH-ssNP interface via a self-induced back action (SIBA) plasmonic force. We have previously named this method SIBA Actuated Nanopore Electrophoresis (SANE) sensing and have shown its ability to perform concurrent optical and DC electrical measurements. Here, we extend this method to AC sensing of 20 nm SiO<sub>2</sub> (silica) nanoparticles, using voltage modulation over a wide range of frequencies applied on top of a baseline DC bias. The sensor was constructed using two-beam GFIS Focused Ion Beam (FIB) lithography, incorporating Ne FIB to mill the DNH and He FIB to drill a central 30 nm ssNP. We utilized COMSOL Multiphysics simulations to explore the multi-frequency AC current conductance properties of the silica nanoparticles trapped at the SANE sensor. These simulations computed conductance changes and phase shifts induced by the presence of the nanoparticle over an AC frequency range of 20 Hz to 100 kHz. Experimental measurements confirmed the trends seen in the computational data. Additional computational studies were then performed to dissect the underlying mechanisms driving the observed AC measurements. Looking forward, we aim to adapt this technology for probing therapeutic nanoparticles non-invasively, offering a promising tool for enhancing quality control of nanoparticle-mediated drug and gene delivery systems.</div></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"46 \",\"pages\":\"Article 100694\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221418042400076X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221418042400076X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Computational and experimental study of AC measurements performed by a double-nanohole plasmonic nanopore sensor on 20 nm silica nanoparticles
A novel method of AC sensing is presented that uses a double nanohole (DNH) nanoaperture atop a solid-state nanopore (ssNP) to trap analytes and measure their optical and electrical properties. In this method analytes are propelled by an external applied voltage towards the sensor until they are trapped at the DNH-ssNP interface via a self-induced back action (SIBA) plasmonic force. We have previously named this method SIBA Actuated Nanopore Electrophoresis (SANE) sensing and have shown its ability to perform concurrent optical and DC electrical measurements. Here, we extend this method to AC sensing of 20 nm SiO2 (silica) nanoparticles, using voltage modulation over a wide range of frequencies applied on top of a baseline DC bias. The sensor was constructed using two-beam GFIS Focused Ion Beam (FIB) lithography, incorporating Ne FIB to mill the DNH and He FIB to drill a central 30 nm ssNP. We utilized COMSOL Multiphysics simulations to explore the multi-frequency AC current conductance properties of the silica nanoparticles trapped at the SANE sensor. These simulations computed conductance changes and phase shifts induced by the presence of the nanoparticle over an AC frequency range of 20 Hz to 100 kHz. Experimental measurements confirmed the trends seen in the computational data. Additional computational studies were then performed to dissect the underlying mechanisms driving the observed AC measurements. Looking forward, we aim to adapt this technology for probing therapeutic nanoparticles non-invasively, offering a promising tool for enhancing quality control of nanoparticle-mediated drug and gene delivery systems.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.