Mansour Rezapour Gatabi , Seyed Saleh Ghoreishi Amiri , Reza Yousefi , Hadi Dehbovid , Amard Afzalian
{"title":"通过石墨烯圆盘的周期性阵列实现二氧化碳传感","authors":"Mansour Rezapour Gatabi , Seyed Saleh Ghoreishi Amiri , Reza Yousefi , Hadi Dehbovid , Amard Afzalian","doi":"10.1016/j.sbsr.2024.100696","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to introduce a gas detection structure based on stacked layers of graphene-spacer-metal. The presented structure consists of three stacked layers. The first layer is the periodic arrays of graphene disks on top of a typical dielectric such as TOPAS or KAPTON with a known refractive index. Then the second layer provides an air gap opening room for a sample environment. Finally, the third layer includes the dielectric and a continuous graphene sheet. All the exploited elements are modeled by circuit element while the equivalent impedance of the whole structure is calculated. The impedance matching concept is also exploited to obtain absorption power based on the calculated impedance. Additionally, full-wave simulation is performed to investigate the circuit modeling accuracy. Achieving a perfect match for absorption versus frequency verifies the developed method's robustness. Furthermore, comprehensive and ample simulation results are reported to highlight the sensitivity and reliability of the proposed gas detector.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"46 ","pages":"Article 100696"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 sensing via periodic Array of graphene disks\",\"authors\":\"Mansour Rezapour Gatabi , Seyed Saleh Ghoreishi Amiri , Reza Yousefi , Hadi Dehbovid , Amard Afzalian\",\"doi\":\"10.1016/j.sbsr.2024.100696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims to introduce a gas detection structure based on stacked layers of graphene-spacer-metal. The presented structure consists of three stacked layers. The first layer is the periodic arrays of graphene disks on top of a typical dielectric such as TOPAS or KAPTON with a known refractive index. Then the second layer provides an air gap opening room for a sample environment. Finally, the third layer includes the dielectric and a continuous graphene sheet. All the exploited elements are modeled by circuit element while the equivalent impedance of the whole structure is calculated. The impedance matching concept is also exploited to obtain absorption power based on the calculated impedance. Additionally, full-wave simulation is performed to investigate the circuit modeling accuracy. Achieving a perfect match for absorption versus frequency verifies the developed method's robustness. Furthermore, comprehensive and ample simulation results are reported to highlight the sensitivity and reliability of the proposed gas detector.</div></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"46 \",\"pages\":\"Article 100696\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214180424000783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
This work aims to introduce a gas detection structure based on stacked layers of graphene-spacer-metal. The presented structure consists of three stacked layers. The first layer is the periodic arrays of graphene disks on top of a typical dielectric such as TOPAS or KAPTON with a known refractive index. Then the second layer provides an air gap opening room for a sample environment. Finally, the third layer includes the dielectric and a continuous graphene sheet. All the exploited elements are modeled by circuit element while the equivalent impedance of the whole structure is calculated. The impedance matching concept is also exploited to obtain absorption power based on the calculated impedance. Additionally, full-wave simulation is performed to investigate the circuit modeling accuracy. Achieving a perfect match for absorption versus frequency verifies the developed method's robustness. Furthermore, comprehensive and ample simulation results are reported to highlight the sensitivity and reliability of the proposed gas detector.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.