Shiguang Wang , Marie-Luce Chevalier , Paul Tapponnier , Haibing Li , Wenjun Zheng , Xulong Wang , Kang Li , Xiwei Xu
{"title":"西藏南部亚东断裂共震地表破裂的时间和特征","authors":"Shiguang Wang , Marie-Luce Chevalier , Paul Tapponnier , Haibing Li , Wenjun Zheng , Xulong Wang , Kang Li , Xiwei Xu","doi":"10.1016/j.jsg.2024.105264","DOIUrl":null,"url":null,"abstract":"<div><div>The Yadong-Gulu rift (YGR) is the most prominent and seismically active of the seven main ∼ NS-trending rifts in southern Tibet. Although the morphology of the southern YGR clearly indicates it has witnessed large earthquakes in the past, and despite its significant late Quaternary throw rates of ∼1 mm/yr, no large historical or instrumental earthquakes have been reported, including in the southernmost Pagri half-graben, in contrast to the northern part of the rift which is highly seismically active. Here, geomorphic characteristics helped us constrain the timing of a paleoearthquake that produced surface ruptures along the Pagri half-graben, used to document its past activity and evaluate its seismic hazard. We demonstrate that the co-seismic surface ruptures extend for ∼65 km along the Yadong normal fault, with a maximum vertical displacement ranging from 2 to 4.0 ± 0.1 m. Based on empirical relationships between magnitude, surface rupture length, and fault displacement, we suggest that this event may correspond to a M<sub>w</sub>6.9–7.2 earthquake. Combined with previous studies, our radiocarbon (<sup>14</sup>C) and Optically Stimulated Luminescence (OSL) ages from three pits within the earthquake wedge across the surface ruptures constrain the paleoearthquake timing at 3470-2056 years BP. We suggest that the southern YGR currently has a high regional seismic hazard for a M<sub>w</sub>6.8–7.1 earthquake, considering the significant throw rates and long timespan since the last strong event. Furthermore, we suggest that such different seismic activity and throw/extension rates between the southern and northern YGR may be explained by different upper crustal rheology behavior and mid-crustal structure.</div></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timing and characteristics of co-seismic surface ruptures in the Yadong rift, southern Tibet\",\"authors\":\"Shiguang Wang , Marie-Luce Chevalier , Paul Tapponnier , Haibing Li , Wenjun Zheng , Xulong Wang , Kang Li , Xiwei Xu\",\"doi\":\"10.1016/j.jsg.2024.105264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Yadong-Gulu rift (YGR) is the most prominent and seismically active of the seven main ∼ NS-trending rifts in southern Tibet. Although the morphology of the southern YGR clearly indicates it has witnessed large earthquakes in the past, and despite its significant late Quaternary throw rates of ∼1 mm/yr, no large historical or instrumental earthquakes have been reported, including in the southernmost Pagri half-graben, in contrast to the northern part of the rift which is highly seismically active. Here, geomorphic characteristics helped us constrain the timing of a paleoearthquake that produced surface ruptures along the Pagri half-graben, used to document its past activity and evaluate its seismic hazard. We demonstrate that the co-seismic surface ruptures extend for ∼65 km along the Yadong normal fault, with a maximum vertical displacement ranging from 2 to 4.0 ± 0.1 m. Based on empirical relationships between magnitude, surface rupture length, and fault displacement, we suggest that this event may correspond to a M<sub>w</sub>6.9–7.2 earthquake. Combined with previous studies, our radiocarbon (<sup>14</sup>C) and Optically Stimulated Luminescence (OSL) ages from three pits within the earthquake wedge across the surface ruptures constrain the paleoearthquake timing at 3470-2056 years BP. We suggest that the southern YGR currently has a high regional seismic hazard for a M<sub>w</sub>6.8–7.1 earthquake, considering the significant throw rates and long timespan since the last strong event. Furthermore, we suggest that such different seismic activity and throw/extension rates between the southern and northern YGR may be explained by different upper crustal rheology behavior and mid-crustal structure.</div></div>\",\"PeriodicalId\":50035,\"journal\":{\"name\":\"Journal of Structural Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0191814124002165\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124002165","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Timing and characteristics of co-seismic surface ruptures in the Yadong rift, southern Tibet
The Yadong-Gulu rift (YGR) is the most prominent and seismically active of the seven main ∼ NS-trending rifts in southern Tibet. Although the morphology of the southern YGR clearly indicates it has witnessed large earthquakes in the past, and despite its significant late Quaternary throw rates of ∼1 mm/yr, no large historical or instrumental earthquakes have been reported, including in the southernmost Pagri half-graben, in contrast to the northern part of the rift which is highly seismically active. Here, geomorphic characteristics helped us constrain the timing of a paleoearthquake that produced surface ruptures along the Pagri half-graben, used to document its past activity and evaluate its seismic hazard. We demonstrate that the co-seismic surface ruptures extend for ∼65 km along the Yadong normal fault, with a maximum vertical displacement ranging from 2 to 4.0 ± 0.1 m. Based on empirical relationships between magnitude, surface rupture length, and fault displacement, we suggest that this event may correspond to a Mw6.9–7.2 earthquake. Combined with previous studies, our radiocarbon (14C) and Optically Stimulated Luminescence (OSL) ages from three pits within the earthquake wedge across the surface ruptures constrain the paleoearthquake timing at 3470-2056 years BP. We suggest that the southern YGR currently has a high regional seismic hazard for a Mw6.8–7.1 earthquake, considering the significant throw rates and long timespan since the last strong event. Furthermore, we suggest that such different seismic activity and throw/extension rates between the southern and northern YGR may be explained by different upper crustal rheology behavior and mid-crustal structure.
期刊介绍:
The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.