F.T. Brandt , J. Frenkel , S. Martins-Filho , D.G.C. McKeon
{"title":"一阶形式的爱因斯坦-卡尔坦理论重正化","authors":"F.T. Brandt , J. Frenkel , S. Martins-Filho , D.G.C. McKeon","doi":"10.1016/j.aop.2024.169801","DOIUrl":null,"url":null,"abstract":"<div><div>We examine the Einstein–Cartan (EC) theory in first-order form, which has a diffeomorphism as well as a local Lorentz invariance. We study the renormalizability of this theory in the framework of the Batalin–Vilkovisky formalism, which allows for a gauge invariant renormalization. Using the background field method, we discuss the gauge invariance of the background effective action and analyze the Ward identities which reflect the symmetries of the EC theory. As an application, we compute, in a general background gauge, the self-energy of the tetrad field at one-loop order.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"470 ","pages":"Article 169801"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Renormalization of the Einstein–Cartan theory in first-order form\",\"authors\":\"F.T. Brandt , J. Frenkel , S. Martins-Filho , D.G.C. McKeon\",\"doi\":\"10.1016/j.aop.2024.169801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We examine the Einstein–Cartan (EC) theory in first-order form, which has a diffeomorphism as well as a local Lorentz invariance. We study the renormalizability of this theory in the framework of the Batalin–Vilkovisky formalism, which allows for a gauge invariant renormalization. Using the background field method, we discuss the gauge invariance of the background effective action and analyze the Ward identities which reflect the symmetries of the EC theory. As an application, we compute, in a general background gauge, the self-energy of the tetrad field at one-loop order.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"470 \",\"pages\":\"Article 169801\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624002082\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624002082","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Renormalization of the Einstein–Cartan theory in first-order form
We examine the Einstein–Cartan (EC) theory in first-order form, which has a diffeomorphism as well as a local Lorentz invariance. We study the renormalizability of this theory in the framework of the Batalin–Vilkovisky formalism, which allows for a gauge invariant renormalization. Using the background field method, we discuss the gauge invariance of the background effective action and analyze the Ward identities which reflect the symmetries of the EC theory. As an application, we compute, in a general background gauge, the self-energy of the tetrad field at one-loop order.
期刊介绍:
Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance.
The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.