Lufang Zhao , Yao Wang , Yan Zhu , Jinbao Huang , Hong Wang , Li Jin
{"title":"十溴聯苯熱分解的機理和動力學:与活性自由基的反应和多溴二苯并呋喃的化学形成","authors":"Lufang Zhao , Yao Wang , Yan Zhu , Jinbao Huang , Hong Wang , Li Jin","doi":"10.1016/j.envres.2024.120061","DOIUrl":null,"url":null,"abstract":"<div><div>Although the production and usage of polybrominated biphenyls (PBBs) as brominated flame retardants have already been prohibited, they still pose a threat to the environment and human health. However, the evolutionary behaviors and decomposition mechanisms of PBBs during thermal treatment of waste remain unclear. In the present work, the mechanism and kinetics of thermal decomposition of decabromobiphenyl (deca-BB), one of the most frequently-used PBB congeners, are studied in detail using quantum chemical calculations. Results indicate that the high bond dissociation energies and large energy gap of deca-BB make its self-decomposition reaction difficult to occur, while its reactions with several reactive radicals (including hydrogen, bromine, and hydroxyl radicals) in the combustion environment are universally carried out at low energy barriers. Hydrogen, bromine, and hydroxyl radicals all exhibit a high selectivity for the <em>para</em>-C/Br atoms of deca-BB, resulting in the generation of several debromination products or intermediates. This study also investigates the formation mechanism of polybrominated dibenzofurans (PBDFs) from deca-BB and the effect of polymeric materials on this process. We found that the oxidation of <em>ortho</em>-phenyl-type radical, followed by evolution into PBDFs, is a very exothermic and relatively low-barrier process. Thus, the emergence of <em>ortho</em>-phenyl-type radicals from the loss of <em>ortho</em>-Br atoms is a critical step in the formation of PBDFs. Influence of polymeric materials on the formation of PBDFs is reflected in that various alkyl radicals and diradicals produced by their decomposition can readily abstract <em>ortho</em>-Br atoms to generate <em>ortho</em>-phenyl-type radicals, thus facilitating the formation of PBDFs. The mechanistic pathways and kinetic parameters presented in this study can offer theoretical guidance for controlling contaminant emissions in the thermal treatment of deca-BB-containing waste.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism and kinetics of thermal decomposition of decabromobiphenyl: Reaction with reactive radicals and formation chemistry of polybrominated dibenzofurans\",\"authors\":\"Lufang Zhao , Yao Wang , Yan Zhu , Jinbao Huang , Hong Wang , Li Jin\",\"doi\":\"10.1016/j.envres.2024.120061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although the production and usage of polybrominated biphenyls (PBBs) as brominated flame retardants have already been prohibited, they still pose a threat to the environment and human health. However, the evolutionary behaviors and decomposition mechanisms of PBBs during thermal treatment of waste remain unclear. In the present work, the mechanism and kinetics of thermal decomposition of decabromobiphenyl (deca-BB), one of the most frequently-used PBB congeners, are studied in detail using quantum chemical calculations. Results indicate that the high bond dissociation energies and large energy gap of deca-BB make its self-decomposition reaction difficult to occur, while its reactions with several reactive radicals (including hydrogen, bromine, and hydroxyl radicals) in the combustion environment are universally carried out at low energy barriers. Hydrogen, bromine, and hydroxyl radicals all exhibit a high selectivity for the <em>para</em>-C/Br atoms of deca-BB, resulting in the generation of several debromination products or intermediates. This study also investigates the formation mechanism of polybrominated dibenzofurans (PBDFs) from deca-BB and the effect of polymeric materials on this process. We found that the oxidation of <em>ortho</em>-phenyl-type radical, followed by evolution into PBDFs, is a very exothermic and relatively low-barrier process. Thus, the emergence of <em>ortho</em>-phenyl-type radicals from the loss of <em>ortho</em>-Br atoms is a critical step in the formation of PBDFs. Influence of polymeric materials on the formation of PBDFs is reflected in that various alkyl radicals and diradicals produced by their decomposition can readily abstract <em>ortho</em>-Br atoms to generate <em>ortho</em>-phenyl-type radicals, thus facilitating the formation of PBDFs. The mechanistic pathways and kinetic parameters presented in this study can offer theoretical guidance for controlling contaminant emissions in the thermal treatment of deca-BB-containing waste.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935124019686\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935124019686","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanism and kinetics of thermal decomposition of decabromobiphenyl: Reaction with reactive radicals and formation chemistry of polybrominated dibenzofurans
Although the production and usage of polybrominated biphenyls (PBBs) as brominated flame retardants have already been prohibited, they still pose a threat to the environment and human health. However, the evolutionary behaviors and decomposition mechanisms of PBBs during thermal treatment of waste remain unclear. In the present work, the mechanism and kinetics of thermal decomposition of decabromobiphenyl (deca-BB), one of the most frequently-used PBB congeners, are studied in detail using quantum chemical calculations. Results indicate that the high bond dissociation energies and large energy gap of deca-BB make its self-decomposition reaction difficult to occur, while its reactions with several reactive radicals (including hydrogen, bromine, and hydroxyl radicals) in the combustion environment are universally carried out at low energy barriers. Hydrogen, bromine, and hydroxyl radicals all exhibit a high selectivity for the para-C/Br atoms of deca-BB, resulting in the generation of several debromination products or intermediates. This study also investigates the formation mechanism of polybrominated dibenzofurans (PBDFs) from deca-BB and the effect of polymeric materials on this process. We found that the oxidation of ortho-phenyl-type radical, followed by evolution into PBDFs, is a very exothermic and relatively low-barrier process. Thus, the emergence of ortho-phenyl-type radicals from the loss of ortho-Br atoms is a critical step in the formation of PBDFs. Influence of polymeric materials on the formation of PBDFs is reflected in that various alkyl radicals and diradicals produced by their decomposition can readily abstract ortho-Br atoms to generate ortho-phenyl-type radicals, thus facilitating the formation of PBDFs. The mechanistic pathways and kinetic parameters presented in this study can offer theoretical guidance for controlling contaminant emissions in the thermal treatment of deca-BB-containing waste.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.