{"title":"过敏性疾病中的上皮传感","authors":"Michael V Mandanas , Nora A Barrett","doi":"10.1016/j.coi.2024.102490","DOIUrl":null,"url":null,"abstract":"<div><div>Epithelial cells provide a first line of immune defense by maintaining barrier function, orchestrating mucociliary clearance, secreting antimicrobial molecules, and generating sentinel signals to both activate innate immune cells and shape adaptive immunity. Although epithelial alarmins play a particularly important role in the initiation of type 2 inflammation in response to allergens, the mechanisms by which epithelial cells sense the environment and regulate the generation and release of alarmins have been poorly understood. Recent studies have identified new sensors and signaling pathways used by barrier epithelial cells to elicit type 2 inflammation, including a novel pathway for the release of interleukin-33 from the nucleus that depends on apoptotic signaling. These recent findings have implications in the development of allergic diseases, from atopic eczema to food allergy, rhinitis, and asthma.</div></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"91 ","pages":"Article 102490"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epithelial sensing in allergic disease\",\"authors\":\"Michael V Mandanas , Nora A Barrett\",\"doi\":\"10.1016/j.coi.2024.102490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epithelial cells provide a first line of immune defense by maintaining barrier function, orchestrating mucociliary clearance, secreting antimicrobial molecules, and generating sentinel signals to both activate innate immune cells and shape adaptive immunity. Although epithelial alarmins play a particularly important role in the initiation of type 2 inflammation in response to allergens, the mechanisms by which epithelial cells sense the environment and regulate the generation and release of alarmins have been poorly understood. Recent studies have identified new sensors and signaling pathways used by barrier epithelial cells to elicit type 2 inflammation, including a novel pathway for the release of interleukin-33 from the nucleus that depends on apoptotic signaling. These recent findings have implications in the development of allergic diseases, from atopic eczema to food allergy, rhinitis, and asthma.</div></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":\"91 \",\"pages\":\"Article 102490\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952791524000803\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791524000803","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Epithelial cells provide a first line of immune defense by maintaining barrier function, orchestrating mucociliary clearance, secreting antimicrobial molecules, and generating sentinel signals to both activate innate immune cells and shape adaptive immunity. Although epithelial alarmins play a particularly important role in the initiation of type 2 inflammation in response to allergens, the mechanisms by which epithelial cells sense the environment and regulate the generation and release of alarmins have been poorly understood. Recent studies have identified new sensors and signaling pathways used by barrier epithelial cells to elicit type 2 inflammation, including a novel pathway for the release of interleukin-33 from the nucleus that depends on apoptotic signaling. These recent findings have implications in the development of allergic diseases, from atopic eczema to food allergy, rhinitis, and asthma.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.