形状定制纳米铈作为高性能超级电容器电极材料

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Trishanku Kashyap , Gitarthi Gogoi , Hirendra Das , Arishma Buragohain , Debajyoti Mahanta , Manash R. Das , Pranjal Saikia
{"title":"形状定制纳米铈作为高性能超级电容器电极材料","authors":"Trishanku Kashyap ,&nbsp;Gitarthi Gogoi ,&nbsp;Hirendra Das ,&nbsp;Arishma Buragohain ,&nbsp;Debajyoti Mahanta ,&nbsp;Manash R. Das ,&nbsp;Pranjal Saikia","doi":"10.1016/j.mtla.2024.102237","DOIUrl":null,"url":null,"abstract":"<div><div>Electrochemical energy storage devices herald a brighter future, offering efficient and sustainable solutions to meet the escalating global energy demands. The current work investigates the development and characterization of different ceria nanostructures (nanorod, nanocube, and nanopolyhedra) as effective electrode materials for supercapacitor applications. The electrode materials are systematically characterized using various spectroscopic and non-spectroscopic techniques. Galvanostatic charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry techniques are used to evaluate the electrochemical performance of the electrode materials. The optimum material for the said application is cerium nanorod which has the maximum specific capacitance of 437.27 F/g in acid electrolytes. The current-voltage (I-V) characteristics of the ceria nanostructures exhibit hysteresis behavior; ceria nanorod showing coexistence of memristive and memcapacitive nature. The loop area of the hysteresis curve, derived from the ratio of OFF resistance to ON resistance (R<sub>OFF</sub>/R<sub>ON</sub>) at 4 V, yields approximate values of 1.08, 1.33, and 1.57 for ceria nanocubes, ceria nanopolyhedra, and ceria nanorods, respectively. Impedance vs. frequency analysis of the samples was also carried out to study their electrical and transport properties. The results obtained from electrochemical analyses are complimented by electrical studies.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102237"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape tailored nano-ceria as high performance supercapacitor electrode material\",\"authors\":\"Trishanku Kashyap ,&nbsp;Gitarthi Gogoi ,&nbsp;Hirendra Das ,&nbsp;Arishma Buragohain ,&nbsp;Debajyoti Mahanta ,&nbsp;Manash R. Das ,&nbsp;Pranjal Saikia\",\"doi\":\"10.1016/j.mtla.2024.102237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrochemical energy storage devices herald a brighter future, offering efficient and sustainable solutions to meet the escalating global energy demands. The current work investigates the development and characterization of different ceria nanostructures (nanorod, nanocube, and nanopolyhedra) as effective electrode materials for supercapacitor applications. The electrode materials are systematically characterized using various spectroscopic and non-spectroscopic techniques. Galvanostatic charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry techniques are used to evaluate the electrochemical performance of the electrode materials. The optimum material for the said application is cerium nanorod which has the maximum specific capacitance of 437.27 F/g in acid electrolytes. The current-voltage (I-V) characteristics of the ceria nanostructures exhibit hysteresis behavior; ceria nanorod showing coexistence of memristive and memcapacitive nature. The loop area of the hysteresis curve, derived from the ratio of OFF resistance to ON resistance (R<sub>OFF</sub>/R<sub>ON</sub>) at 4 V, yields approximate values of 1.08, 1.33, and 1.57 for ceria nanocubes, ceria nanopolyhedra, and ceria nanorods, respectively. Impedance vs. frequency analysis of the samples was also carried out to study their electrical and transport properties. The results obtained from electrochemical analyses are complimented by electrical studies.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102237\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学储能装置预示着一个更加光明的未来,为满足不断增长的全球能源需求提供了高效、可持续的解决方案。目前的工作研究了不同铈纳米结构(纳米棒、纳米立方体和纳米多面体)作为超级电容器应用的有效电极材料的开发和表征。利用各种光谱和非光谱技术对电极材料进行了系统表征。伽马静态充放电、电化学阻抗光谱和循环伏安技术用于评估电极材料的电化学性能。铈纳米棒是上述应用的最佳材料,它在酸性电解质中的最大比电容为 437.27 F/g。纳米铈结构的电流-电压(I-V)特性表现出滞后行为;纳米铈棒显示出记忆性和记忆电容性的共存。在 4 V 电压下,根据关断电阻与导通电阻之比(ROFF/RON)得出的磁滞曲线环面积,纳米陶瓷立方体、纳米陶瓷多面体和纳米陶瓷棒的近似值分别为 1.08、1.33 和 1.57。此外,还对样品进行了阻抗与频率分析,以研究其电气和传输特性。电学研究补充了电化学分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shape tailored nano-ceria as high performance supercapacitor electrode material

Shape tailored nano-ceria as high performance supercapacitor electrode material
Electrochemical energy storage devices herald a brighter future, offering efficient and sustainable solutions to meet the escalating global energy demands. The current work investigates the development and characterization of different ceria nanostructures (nanorod, nanocube, and nanopolyhedra) as effective electrode materials for supercapacitor applications. The electrode materials are systematically characterized using various spectroscopic and non-spectroscopic techniques. Galvanostatic charge-discharge, electrochemical impedance spectroscopy, and cyclic voltammetry techniques are used to evaluate the electrochemical performance of the electrode materials. The optimum material for the said application is cerium nanorod which has the maximum specific capacitance of 437.27 F/g in acid electrolytes. The current-voltage (I-V) characteristics of the ceria nanostructures exhibit hysteresis behavior; ceria nanorod showing coexistence of memristive and memcapacitive nature. The loop area of the hysteresis curve, derived from the ratio of OFF resistance to ON resistance (ROFF/RON) at 4 V, yields approximate values of 1.08, 1.33, and 1.57 for ceria nanocubes, ceria nanopolyhedra, and ceria nanorods, respectively. Impedance vs. frequency analysis of the samples was also carried out to study their electrical and transport properties. The results obtained from electrochemical analyses are complimented by electrical studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信