{"title":"核 C⁎-代数上等变 O2 稳定可配作用的分类","authors":"Matteo Pagliero, Gábor Szabó","doi":"10.1016/j.jfa.2024.110683","DOIUrl":null,"url":null,"abstract":"<div><div>Given a second-countable, locally compact group <em>G</em>, we consider amenable <em>G</em>-actions on separable, stable, nuclear <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras that are isometrically shift-absorbing and tensorially absorb the trivial action on the Cuntz algebra <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We show that such actions are classified up to cocycle conjugacy by the induced <em>G</em>-action on the primitive ideal space. In the special case when <em>G</em> is exact, we prove a unital version of our classification theorem. For compact groups, we obtain a classification up to conjugacy.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110683"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of equivariantly O2-stable amenable actions on nuclear C⁎-algebras\",\"authors\":\"Matteo Pagliero, Gábor Szabó\",\"doi\":\"10.1016/j.jfa.2024.110683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a second-countable, locally compact group <em>G</em>, we consider amenable <em>G</em>-actions on separable, stable, nuclear <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras that are isometrically shift-absorbing and tensorially absorb the trivial action on the Cuntz algebra <span><math><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. We show that such actions are classified up to cocycle conjugacy by the induced <em>G</em>-action on the primitive ideal space. In the special case when <em>G</em> is exact, we prove a unital version of our classification theorem. For compact groups, we obtain a classification up to conjugacy.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"288 2\",\"pages\":\"Article 110683\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003719\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003719","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一个二次可数局部紧密群 G,我们考虑可分离、稳定、核 C⁎-原子团上的可处理 G 作用,这些作用等效地吸收移位,并张量地吸收 Cuntz 代数 O2 上的琐细作用。我们的研究表明,这种作用是由原始理想空间上的诱导 G 作用分类到共轭循环的。在 G 是精确的特殊情况下,我们证明了我们的分类定理的单元版本。对于紧凑群,我们得到了直至共轭的分类。
Classification of equivariantly O2-stable amenable actions on nuclear C⁎-algebras
Given a second-countable, locally compact group G, we consider amenable G-actions on separable, stable, nuclear -algebras that are isometrically shift-absorbing and tensorially absorb the trivial action on the Cuntz algebra . We show that such actions are classified up to cocycle conjugacy by the induced G-action on the primitive ideal space. In the special case when G is exact, we prove a unital version of our classification theorem. For compact groups, we obtain a classification up to conjugacy.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis