{"title":"通过超声耦合阳极涂层 MnO2 协同实现锌电解的颗粒物减排和生产性能优化","authors":"Yanhui Wang, Lingyu Li, Xiyu Jiang, Haiteng Zhang, Xiaocan Bai, Yuhan Huang, Ting Liu, Yan Tan, Zizhen Ma, Huawei Zhang","doi":"10.1016/j.jece.2024.114223","DOIUrl":null,"url":null,"abstract":"<div><div>Abating particulate matter (PM) from electrolysis processes is significant because this PM poses occupational threats to workers and has a negative impact on air quality. However, it remains a challenge to synergize the reduction of PM production and the improvement of electrolysis performance. This study developed a green method, termed as the coupling of ultrasonication and pre-coating MnO<sub>2</sub> anode treatment (UMT). The effects on PM generation rate and electrolysis performance indicators were estimated using the bench-scale zinc electrolysis device, and the synergistic mechanism of UMT was expanded from the perspective of electrochemical reactions and bubble characteristics using analysis of reaction products, camera technique, and PM generation prediction models. The results showed UMT not only overcame the degradation of deposited zinc quality caused by the ultrasonication treatment but also solved the increased PM generation by the pre-coating MnO<sub>2</sub> film treatment. The UMT simultaneously reduced PM (33.9 %-57.5 %), decreased zinc impurity content by (11.2 %-54.3 %), improved current efficiency of zinc deposition (0.19 %-1.71 %), and conserved electrolysis energy (0.27 %-1.01 %). The optimal performance of UMT occurred at 80 kHz. The UMT suppressed the gas evolution reactions and prematurely bursting bubbles, in favor of reducing the number and size of bubbles, to reduce PM generation. Meanwhile, the UMT improved the electrolysis performance by inhibiting the corrosion of lead-based anodes, promoting the mass transfer rate of Zn<sup>2+</sup>, providing more active surfaces, and decreasing the overpotential of reactions. The findings may provide references for the green development of the metal electrolysis industry.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114223"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistically achieving particulate matter reduction and production performance optimization for zinc electrolysis by ultrasonication coupling anode-coated MnO2\",\"authors\":\"Yanhui Wang, Lingyu Li, Xiyu Jiang, Haiteng Zhang, Xiaocan Bai, Yuhan Huang, Ting Liu, Yan Tan, Zizhen Ma, Huawei Zhang\",\"doi\":\"10.1016/j.jece.2024.114223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Abating particulate matter (PM) from electrolysis processes is significant because this PM poses occupational threats to workers and has a negative impact on air quality. However, it remains a challenge to synergize the reduction of PM production and the improvement of electrolysis performance. This study developed a green method, termed as the coupling of ultrasonication and pre-coating MnO<sub>2</sub> anode treatment (UMT). The effects on PM generation rate and electrolysis performance indicators were estimated using the bench-scale zinc electrolysis device, and the synergistic mechanism of UMT was expanded from the perspective of electrochemical reactions and bubble characteristics using analysis of reaction products, camera technique, and PM generation prediction models. The results showed UMT not only overcame the degradation of deposited zinc quality caused by the ultrasonication treatment but also solved the increased PM generation by the pre-coating MnO<sub>2</sub> film treatment. The UMT simultaneously reduced PM (33.9 %-57.5 %), decreased zinc impurity content by (11.2 %-54.3 %), improved current efficiency of zinc deposition (0.19 %-1.71 %), and conserved electrolysis energy (0.27 %-1.01 %). The optimal performance of UMT occurred at 80 kHz. The UMT suppressed the gas evolution reactions and prematurely bursting bubbles, in favor of reducing the number and size of bubbles, to reduce PM generation. Meanwhile, the UMT improved the electrolysis performance by inhibiting the corrosion of lead-based anodes, promoting the mass transfer rate of Zn<sup>2+</sup>, providing more active surfaces, and decreasing the overpotential of reactions. The findings may provide references for the green development of the metal electrolysis industry.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114223\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724023546\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023546","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Synergistically achieving particulate matter reduction and production performance optimization for zinc electrolysis by ultrasonication coupling anode-coated MnO2
Abating particulate matter (PM) from electrolysis processes is significant because this PM poses occupational threats to workers and has a negative impact on air quality. However, it remains a challenge to synergize the reduction of PM production and the improvement of electrolysis performance. This study developed a green method, termed as the coupling of ultrasonication and pre-coating MnO2 anode treatment (UMT). The effects on PM generation rate and electrolysis performance indicators were estimated using the bench-scale zinc electrolysis device, and the synergistic mechanism of UMT was expanded from the perspective of electrochemical reactions and bubble characteristics using analysis of reaction products, camera technique, and PM generation prediction models. The results showed UMT not only overcame the degradation of deposited zinc quality caused by the ultrasonication treatment but also solved the increased PM generation by the pre-coating MnO2 film treatment. The UMT simultaneously reduced PM (33.9 %-57.5 %), decreased zinc impurity content by (11.2 %-54.3 %), improved current efficiency of zinc deposition (0.19 %-1.71 %), and conserved electrolysis energy (0.27 %-1.01 %). The optimal performance of UMT occurred at 80 kHz. The UMT suppressed the gas evolution reactions and prematurely bursting bubbles, in favor of reducing the number and size of bubbles, to reduce PM generation. Meanwhile, the UMT improved the electrolysis performance by inhibiting the corrosion of lead-based anodes, promoting the mass transfer rate of Zn2+, providing more active surfaces, and decreasing the overpotential of reactions. The findings may provide references for the green development of the metal electrolysis industry.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.