具有完整科里奥利力和漩涡结构的高维地球物理流体模型

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
{"title":"具有完整科里奥利力和漩涡结构的高维地球物理流体模型","authors":"","doi":"10.1016/j.wavemoti.2024.103410","DOIUrl":null,"url":null,"abstract":"<div><div>Here, we present a higher dimensional model from the vorticity equation, which describes the dynamic characteristics of large scale Rossby waves by utilizing the Gardner-Morikawa coordinate transformation and the perturbation method. To reveal the influence of physical parameters on the higher dimensional model, we first give the dispersion relation of the model and the N-soliton solutions by Hirota method. Subsequently, the lump solutions are derived by using the long wave limit method. It demonstrates that the horizontal component of the Coriolis force acts as a forcing force on the nonlinear Rossby waves, and affects the amplitude of the meridional structure. Moreover, under the background of secondary zonal basic flow, for different lump solutions, the flow field will appear dipole blocking or double vortex structure. It is also indicated that the horizontal Coriolis force only causes the vortex to move in the latitudinal direction.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A higher dimensional model of geophysical fluid with the complete Coriolis force and vortex structure\",\"authors\":\"\",\"doi\":\"10.1016/j.wavemoti.2024.103410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Here, we present a higher dimensional model from the vorticity equation, which describes the dynamic characteristics of large scale Rossby waves by utilizing the Gardner-Morikawa coordinate transformation and the perturbation method. To reveal the influence of physical parameters on the higher dimensional model, we first give the dispersion relation of the model and the N-soliton solutions by Hirota method. Subsequently, the lump solutions are derived by using the long wave limit method. It demonstrates that the horizontal component of the Coriolis force acts as a forcing force on the nonlinear Rossby waves, and affects the amplitude of the meridional structure. Moreover, under the background of secondary zonal basic flow, for different lump solutions, the flow field will appear dipole blocking or double vortex structure. It is also indicated that the horizontal Coriolis force only causes the vortex to move in the latitudinal direction.</div></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524001409\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524001409","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们利用加德纳-莫里川坐标变换和扰动法,从涡度方程中提出了一个描述大尺度罗斯比波动态特征的高维模型。为了揭示物理参数对高维模型的影响,我们首先给出了模型的频散关系,并用 Hirota 方法给出了 N-soliton 解。随后,利用长波极限法得出了块解。结果表明,科里奥利力的水平分量对非线性罗斯比波起着强迫作用,并影响着经向结构的振幅。此外,在次级带状基本流背景下,对于不同的块解,流场会出现偶极阻塞或双涡结构。研究还表明,水平科里奥利力只导致涡向纬度方向移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A higher dimensional model of geophysical fluid with the complete Coriolis force and vortex structure
Here, we present a higher dimensional model from the vorticity equation, which describes the dynamic characteristics of large scale Rossby waves by utilizing the Gardner-Morikawa coordinate transformation and the perturbation method. To reveal the influence of physical parameters on the higher dimensional model, we first give the dispersion relation of the model and the N-soliton solutions by Hirota method. Subsequently, the lump solutions are derived by using the long wave limit method. It demonstrates that the horizontal component of the Coriolis force acts as a forcing force on the nonlinear Rossby waves, and affects the amplitude of the meridional structure. Moreover, under the background of secondary zonal basic flow, for different lump solutions, the flow field will appear dipole blocking or double vortex structure. It is also indicated that the horizontal Coriolis force only causes the vortex to move in the latitudinal direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信