论幂单子及其自动形态

IF 0.9 2区 数学 Q2 MATHEMATICS
Salvatore Tringali, Weihao Yan
{"title":"论幂单子及其自动形态","authors":"Salvatore Tringali,&nbsp;Weihao Yan","doi":"10.1016/j.jcta.2024.105961","DOIUrl":null,"url":null,"abstract":"<div><div>Endowed with the binary operation of set addition, the family <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of all finite subsets of <span><math><mi>N</mi></math></span> containing 0 forms a monoid, with the singleton {0} as its neutral element.</div><div>We show that the only non-trivial automorphism of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is the involution <span><math><mi>X</mi><mo>↦</mo><mi>max</mi><mo>⁡</mo><mi>X</mi><mo>−</mo><mi>X</mi></math></span>. The proof leverages ideas from additive number theory and proceeds through an unconventional induction on what we call the boxing dimension of a finite set of integers, that is, the smallest number of (discrete) intervals whose union is the set itself.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"209 ","pages":"Article 105961"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On power monoids and their automorphisms\",\"authors\":\"Salvatore Tringali,&nbsp;Weihao Yan\",\"doi\":\"10.1016/j.jcta.2024.105961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endowed with the binary operation of set addition, the family <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> of all finite subsets of <span><math><mi>N</mi></math></span> containing 0 forms a monoid, with the singleton {0} as its neutral element.</div><div>We show that the only non-trivial automorphism of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mrow><mi>fin</mi></mrow><mo>,</mo><mn>0</mn></mrow></msub><mo>(</mo><mi>N</mi><mo>)</mo></math></span> is the involution <span><math><mi>X</mi><mo>↦</mo><mi>max</mi><mo>⁡</mo><mi>X</mi><mo>−</mo><mi>X</mi></math></span>. The proof leverages ideas from additive number theory and proceeds through an unconventional induction on what we call the boxing dimension of a finite set of integers, that is, the smallest number of (discrete) intervals whose union is the set itself.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"209 \",\"pages\":\"Article 105961\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524001006\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524001006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,Pfin,0(N)的唯一非难自变量是内卷X↦maxX-X。证明利用了加法数论的思想,通过对我们所说的有限整数集合的拳数维度(即其结合为集合本身的最小(离散)区间数)的非常规归纳来进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On power monoids and their automorphisms
Endowed with the binary operation of set addition, the family Pfin,0(N) of all finite subsets of N containing 0 forms a monoid, with the singleton {0} as its neutral element.
We show that the only non-trivial automorphism of Pfin,0(N) is the involution XmaxXX. The proof leverages ideas from additive number theory and proceeds through an unconventional induction on what we call the boxing dimension of a finite set of integers, that is, the smallest number of (discrete) intervals whose union is the set itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信