基于应变梯度大应变 FFT 公式的广义晶界构成描述:纳米金属层压板的应用

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Miroslav Zecevic, Ricardo A. Lebensohn, Laurent Capolungo
{"title":"基于应变梯度大应变 FFT 公式的广义晶界构成描述:纳米金属层压板的应用","authors":"Miroslav Zecevic,&nbsp;Ricardo A. Lebensohn,&nbsp;Laurent Capolungo","doi":"10.1016/j.jmps.2024.105859","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a general treatment of grain boundary constitutive behavior in the context of strain-gradient (SG) plasticity, and its numerical implementation in a large-strain (LS) elasto-viscoplastic (EVP) fast Fourier transform (FFT)-based micromechanical model. Two novel grain boundary constitutive equations are proposed, allowing for more accurate description of the Burgers vector flow at the grain boundary. The capabilities of the generalized SG-LS-EVPFFT formulation are illustrated for the case of kink-band formation during layer-parallel compression of nano-metallic laminates (NMLs), requiring consideration of the interaction between dislocations and interfaces.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105859"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized grain boundary constitutive description implemented in a strain-gradient large-strain FFT-based formulation: Application to nano-metallic laminates\",\"authors\":\"Miroslav Zecevic,&nbsp;Ricardo A. Lebensohn,&nbsp;Laurent Capolungo\",\"doi\":\"10.1016/j.jmps.2024.105859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a general treatment of grain boundary constitutive behavior in the context of strain-gradient (SG) plasticity, and its numerical implementation in a large-strain (LS) elasto-viscoplastic (EVP) fast Fourier transform (FFT)-based micromechanical model. Two novel grain boundary constitutive equations are proposed, allowing for more accurate description of the Burgers vector flow at the grain boundary. The capabilities of the generalized SG-LS-EVPFFT formulation are illustrated for the case of kink-band formation during layer-parallel compression of nano-metallic laminates (NMLs), requiring consideration of the interaction between dislocations and interfaces.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105859\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003259\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003259","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了应变梯度(SG)塑性背景下晶界构成行为的一般处理方法,以及在基于大应变(LS)弹塑性(EVP)快速傅立叶变换(FFT)的微机械模型中的数值实现。我们提出了两个新颖的晶界构成方程,可以更准确地描述晶界处的布尔格斯矢量流。针对纳米金属层压板(NMLs)层平行压缩过程中扭结带形成的情况,说明了广义 SG-LS-EVPFFT 公式的能力,需要考虑位错和界面之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized grain boundary constitutive description implemented in a strain-gradient large-strain FFT-based formulation: Application to nano-metallic laminates
This paper presents a general treatment of grain boundary constitutive behavior in the context of strain-gradient (SG) plasticity, and its numerical implementation in a large-strain (LS) elasto-viscoplastic (EVP) fast Fourier transform (FFT)-based micromechanical model. Two novel grain boundary constitutive equations are proposed, allowing for more accurate description of the Burgers vector flow at the grain boundary. The capabilities of the generalized SG-LS-EVPFFT formulation are illustrated for the case of kink-band formation during layer-parallel compression of nano-metallic laminates (NMLs), requiring consideration of the interaction between dislocations and interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信