Dimeng Zhang , JiaYao Li , Zilong Chen , Yuntao Zou
{"title":"利用轮廓小波扩散生成高效图像","authors":"Dimeng Zhang , JiaYao Li , Zilong Chen , Yuntao Zou","doi":"10.1016/j.cag.2024.104087","DOIUrl":null,"url":null,"abstract":"<div><div>The burgeoning field of image generation has captivated academia and industry with its potential to produce high-quality images, facilitating applications like text-to-image conversion, image translation, and recovery. These advancements have notably propelled the growth of the metaverse, where virtual environments constructed from generated images offer new interactive experiences, especially in conjunction with digital libraries. The technology creates detailed high-quality images, enabling immersive experiences. Despite diffusion models showing promise with superior image quality and mode coverage over GANs, their slow training and inference speeds have hindered broader adoption. To counter this, we introduce the Contour Wavelet Diffusion Model, which accelerates the process by decomposing features and employing multi-directional, anisotropic analysis. This model integrates an attention mechanism to focus on high-frequency details and a reconstruction loss function to ensure image consistency and accelerate convergence. The result is a significant reduction in training and inference times without sacrificing image quality, making diffusion models viable for large-scale applications and enhancing their practicality in the evolving digital landscape.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104087"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient image generation with Contour Wavelet Diffusion\",\"authors\":\"Dimeng Zhang , JiaYao Li , Zilong Chen , Yuntao Zou\",\"doi\":\"10.1016/j.cag.2024.104087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The burgeoning field of image generation has captivated academia and industry with its potential to produce high-quality images, facilitating applications like text-to-image conversion, image translation, and recovery. These advancements have notably propelled the growth of the metaverse, where virtual environments constructed from generated images offer new interactive experiences, especially in conjunction with digital libraries. The technology creates detailed high-quality images, enabling immersive experiences. Despite diffusion models showing promise with superior image quality and mode coverage over GANs, their slow training and inference speeds have hindered broader adoption. To counter this, we introduce the Contour Wavelet Diffusion Model, which accelerates the process by decomposing features and employing multi-directional, anisotropic analysis. This model integrates an attention mechanism to focus on high-frequency details and a reconstruction loss function to ensure image consistency and accelerate convergence. The result is a significant reduction in training and inference times without sacrificing image quality, making diffusion models viable for large-scale applications and enhancing their practicality in the evolving digital landscape.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104087\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009784932400222X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784932400222X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Efficient image generation with Contour Wavelet Diffusion
The burgeoning field of image generation has captivated academia and industry with its potential to produce high-quality images, facilitating applications like text-to-image conversion, image translation, and recovery. These advancements have notably propelled the growth of the metaverse, where virtual environments constructed from generated images offer new interactive experiences, especially in conjunction with digital libraries. The technology creates detailed high-quality images, enabling immersive experiences. Despite diffusion models showing promise with superior image quality and mode coverage over GANs, their slow training and inference speeds have hindered broader adoption. To counter this, we introduce the Contour Wavelet Diffusion Model, which accelerates the process by decomposing features and employing multi-directional, anisotropic analysis. This model integrates an attention mechanism to focus on high-frequency details and a reconstruction loss function to ensure image consistency and accelerate convergence. The result is a significant reduction in training and inference times without sacrificing image quality, making diffusion models viable for large-scale applications and enhancing their practicality in the evolving digital landscape.
期刊介绍:
Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on:
1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains.
2. State-of-the-art papers on late-breaking, cutting-edge research on CG.
3. Information on innovative uses of graphics principles and technologies.
4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.