泊松-纳斯特-普朗克方程的质量保守、能量稳定和线性化 BDF2 方案的收敛性和超收敛性分析

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Minghao Li , Dongyang Shi , Zhenzhen Li
{"title":"泊松-纳斯特-普朗克方程的质量保守、能量稳定和线性化 BDF2 方案的收敛性和超收敛性分析","authors":"Minghao Li ,&nbsp;Dongyang Shi ,&nbsp;Zhenzhen Li","doi":"10.1016/j.cnsns.2024.108351","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a linearized BDF2 finite element scheme for the Poisson–Nernst–Planck (PNP) equations. By employing a novel approach, we rigorously derive unconditional optimal error estimates of the numerical solutions in the <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> norms, as well as superconvergent results. The key of the convergence and superconvergence analysis lies in deriving the stability of the finite element solutions in some stronger norms. The advantage of this approach is that there is no need to introduce a corresponding time discrete system, so it is more concise than the error split technique in previous literatures. Finally, we carry out two numerical examples to confirm the theoretical findings.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson–Nernst–Planck equations\",\"authors\":\"Minghao Li ,&nbsp;Dongyang Shi ,&nbsp;Zhenzhen Li\",\"doi\":\"10.1016/j.cnsns.2024.108351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider a linearized BDF2 finite element scheme for the Poisson–Nernst–Planck (PNP) equations. By employing a novel approach, we rigorously derive unconditional optimal error estimates of the numerical solutions in the <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msup><mrow><mi>l</mi></mrow><mrow><mi>∞</mi></mrow></msup><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> norms, as well as superconvergent results. The key of the convergence and superconvergence analysis lies in deriving the stability of the finite element solutions in some stronger norms. The advantage of this approach is that there is no need to introduce a corresponding time discrete system, so it is more concise than the error split technique in previous literatures. Finally, we carry out two numerical examples to confirm the theoretical findings.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005367\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005367","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了泊松-恩斯特-普朗克(PNP)方程的线性化 BDF2 有限元方案。通过采用一种新方法,我们严格推导出数值解在 l∞(L2) 和 l∞(H1) 规范下的无条件最优误差估计以及超收敛结果。收敛和超收敛分析的关键在于推导出有限元解在某些更强规范下的稳定性。这种方法的优点是无需引入相应的时间离散系统,因此比以往文献中的误差分割技术更为简洁。最后,我们通过两个数值实例来证实理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson–Nernst–Planck equations
In this paper, we consider a linearized BDF2 finite element scheme for the Poisson–Nernst–Planck (PNP) equations. By employing a novel approach, we rigorously derive unconditional optimal error estimates of the numerical solutions in the l(L2) and l(H1) norms, as well as superconvergent results. The key of the convergence and superconvergence analysis lies in deriving the stability of the finite element solutions in some stronger norms. The advantage of this approach is that there is no need to introduce a corresponding time discrete system, so it is more concise than the error split technique in previous literatures. Finally, we carry out two numerical examples to confirm the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信