仿射最大类型方程的不变量

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhao Lian
{"title":"仿射最大类型方程的不变量","authors":"Zhao Lian","doi":"10.1016/j.jmaa.2024.128898","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>y</mi><mo>:</mo><mi>M</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, given as the graph of a smooth, strictly convex function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> defined on a domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Considering the <em>α</em>-relative normalization of the graph of the convex function <em>f</em>, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-invariant Kähler metric on complex torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> with vanishing scalar curvature for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An invariant for affine maximal type equations\",\"authors\":\"Zhao Lian\",\"doi\":\"10.1016/j.jmaa.2024.128898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>y</mi><mo>:</mo><mi>M</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, given as the graph of a smooth, strictly convex function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> defined on a domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Considering the <em>α</em>-relative normalization of the graph of the convex function <em>f</em>, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-invariant Kähler metric on complex torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> with vanishing scalar curvature for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008205\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008205","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设 y:M→Rn+1 是光滑连通流形向实仿射空间 Rn+1 的局部强凸超曲面浸入,是定义在域 Ω⊂Rn 上的光滑严格凸函数 xn+1=f(x1,...,xn) 的图。考虑到凸函数 f 图的α 相关归一化,我们将证明一类仿射最大型非线性四阶偏微分方程的伯恩斯坦定理。作为应用,我们定义了方程的不变式,并证明了在 n≤5 时,复环 (C⁎)n 上具有消失标量曲率的完整 Tn 不变凯勒度量的刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An invariant for affine maximal type equations
Let y:MRn+1 be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space Rn+1, given as the graph of a smooth, strictly convex function xn+1=f(x1,...,xn) defined on a domain ΩRn. Considering the α-relative normalization of the graph of the convex function f, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete Tn-invariant Kähler metric on complex torus (C)n with vanishing scalar curvature for n5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信