{"title":"仿射最大类型方程的不变量","authors":"Zhao Lian","doi":"10.1016/j.jmaa.2024.128898","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>y</mi><mo>:</mo><mi>M</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, given as the graph of a smooth, strictly convex function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> defined on a domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Considering the <em>α</em>-relative normalization of the graph of the convex function <em>f</em>, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-invariant Kähler metric on complex torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> with vanishing scalar curvature for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An invariant for affine maximal type equations\",\"authors\":\"Zhao Lian\",\"doi\":\"10.1016/j.jmaa.2024.128898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>y</mi><mo>:</mo><mi>M</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span> be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></math></span>, given as the graph of a smooth, strictly convex function <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> defined on a domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Considering the <em>α</em>-relative normalization of the graph of the convex function <em>f</em>, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>-invariant Kähler metric on complex torus <span><math><msup><mrow><mo>(</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> with vanishing scalar curvature for <span><math><mi>n</mi><mo>≤</mo><mn>5</mn></math></span>.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008205\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008205","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Let be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space , given as the graph of a smooth, strictly convex function defined on a domain . Considering the α-relative normalization of the graph of the convex function f, we will prove a Bernstein theorem for a class of nonlinear, fourth order partial differential equations of affine maximal type. As applications, we define an invariant of the equations and prove a rigidity result of the complete -invariant Kähler metric on complex torus with vanishing scalar curvature for .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.