Veronica Buonincontri , Davide Viggiano , Giuseppe Gigliotti , for the Alzheimer’s Disease Neuroimaging Initiative
{"title":"慢性肾病患者的脑细胞外空间","authors":"Veronica Buonincontri , Davide Viggiano , Giuseppe Gigliotti , for the Alzheimer’s Disease Neuroimaging Initiative","doi":"10.1016/j.bbr.2024.115271","DOIUrl":null,"url":null,"abstract":"<div><div>The brain extracellular space (ECS) is a highly complex structure between the innumerable and intermingled processes of brain cells (neurons and glial cells). This space represents up to 20 % of total brain volume (excluding the ventricles) and hosts an extracellular matrix of proteoglycans. The regulation of this space is unclear, though it may differ from other organs due to the presence of the blood brain barrier. Changes in the ECS may modify the diffusion timing of volume-dependent neurotransmitters such as dopamine, thus potentially altering most brain activities. Indeed, recently it has been shown that mild cognitive impairment is correlated to a reduction of ECS. Because water and electrolyte homeostasis are tightly regulated by the kidney, it is possible that a reduced kidney filtration may change the brain extracellular space and therefore explain the reduced cognitive functions exhibited during kidney diseases. The present communication explores the regulation of ECS in the presence of kidney diseases, discussing how reduced kidney function might impact on brain structure and function in both mice and humans, and suggests potential mechanisms for this link.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The brain extracellular space in chronic kidney disease\",\"authors\":\"Veronica Buonincontri , Davide Viggiano , Giuseppe Gigliotti , for the Alzheimer’s Disease Neuroimaging Initiative\",\"doi\":\"10.1016/j.bbr.2024.115271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The brain extracellular space (ECS) is a highly complex structure between the innumerable and intermingled processes of brain cells (neurons and glial cells). This space represents up to 20 % of total brain volume (excluding the ventricles) and hosts an extracellular matrix of proteoglycans. The regulation of this space is unclear, though it may differ from other organs due to the presence of the blood brain barrier. Changes in the ECS may modify the diffusion timing of volume-dependent neurotransmitters such as dopamine, thus potentially altering most brain activities. Indeed, recently it has been shown that mild cognitive impairment is correlated to a reduction of ECS. Because water and electrolyte homeostasis are tightly regulated by the kidney, it is possible that a reduced kidney filtration may change the brain extracellular space and therefore explain the reduced cognitive functions exhibited during kidney diseases. The present communication explores the regulation of ECS in the presence of kidney diseases, discussing how reduced kidney function might impact on brain structure and function in both mice and humans, and suggests potential mechanisms for this link.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824004273\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004273","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The brain extracellular space in chronic kidney disease
The brain extracellular space (ECS) is a highly complex structure between the innumerable and intermingled processes of brain cells (neurons and glial cells). This space represents up to 20 % of total brain volume (excluding the ventricles) and hosts an extracellular matrix of proteoglycans. The regulation of this space is unclear, though it may differ from other organs due to the presence of the blood brain barrier. Changes in the ECS may modify the diffusion timing of volume-dependent neurotransmitters such as dopamine, thus potentially altering most brain activities. Indeed, recently it has been shown that mild cognitive impairment is correlated to a reduction of ECS. Because water and electrolyte homeostasis are tightly regulated by the kidney, it is possible that a reduced kidney filtration may change the brain extracellular space and therefore explain the reduced cognitive functions exhibited during kidney diseases. The present communication explores the regulation of ECS in the presence of kidney diseases, discussing how reduced kidney function might impact on brain structure and function in both mice and humans, and suggests potential mechanisms for this link.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.