{"title":"混合物和添加剂对溶解表面活性剂层状相的影响","authors":"Mitha Aljabri*, and , Thomas Rodgers, ","doi":"10.1021/acsphyschemau.4c0001310.1021/acsphyschemau.4c00013","DOIUrl":null,"url":null,"abstract":"<p >Understanding the dissolution process of surfactant solutions is important in formulating product design processes. The main goal of this study is to gain further insights into how additives and mixtures affect surfactant dissolution processes. To achieve this goal, dissipative particle dynamic simulations were used. Lamellar phases at 80% volume of surfactant were initially equilibrated with water. After reaching an equilibrium state, the dissolution simulations were carried out for different surfactant mixtures. To track the dissolution process, different metrics were used, including visual analysis, local concentration analysis, diffusion, and cluster size calculations. Results show that by having a mixture of surfactants, the diffusion of the micelles is not affected only by the size of the micelles as in pure surfactant systems, but there is also an effect due to the composition of the micelles. When oil is added to a surfactant system, the system acts like a longer chain surfactant system, but only when the chain of oil becomes sufficiently long.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"4 5","pages":"490–498 490–498"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00013","citationCount":"0","resultStr":"{\"title\":\"The Effect of Mixtures and Additives on Dissolving Surfactant Lamellar Phases\",\"authors\":\"Mitha Aljabri*, and , Thomas Rodgers, \",\"doi\":\"10.1021/acsphyschemau.4c0001310.1021/acsphyschemau.4c00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the dissolution process of surfactant solutions is important in formulating product design processes. The main goal of this study is to gain further insights into how additives and mixtures affect surfactant dissolution processes. To achieve this goal, dissipative particle dynamic simulations were used. Lamellar phases at 80% volume of surfactant were initially equilibrated with water. After reaching an equilibrium state, the dissolution simulations were carried out for different surfactant mixtures. To track the dissolution process, different metrics were used, including visual analysis, local concentration analysis, diffusion, and cluster size calculations. Results show that by having a mixture of surfactants, the diffusion of the micelles is not affected only by the size of the micelles as in pure surfactant systems, but there is also an effect due to the composition of the micelles. When oil is added to a surfactant system, the system acts like a longer chain surfactant system, but only when the chain of oil becomes sufficiently long.</p>\",\"PeriodicalId\":29796,\"journal\":{\"name\":\"ACS Physical Chemistry Au\",\"volume\":\"4 5\",\"pages\":\"490–498 490–498\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Physical Chemistry Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Effect of Mixtures and Additives on Dissolving Surfactant Lamellar Phases
Understanding the dissolution process of surfactant solutions is important in formulating product design processes. The main goal of this study is to gain further insights into how additives and mixtures affect surfactant dissolution processes. To achieve this goal, dissipative particle dynamic simulations were used. Lamellar phases at 80% volume of surfactant were initially equilibrated with water. After reaching an equilibrium state, the dissolution simulations were carried out for different surfactant mixtures. To track the dissolution process, different metrics were used, including visual analysis, local concentration analysis, diffusion, and cluster size calculations. Results show that by having a mixture of surfactants, the diffusion of the micelles is not affected only by the size of the micelles as in pure surfactant systems, but there is also an effect due to the composition of the micelles. When oil is added to a surfactant system, the system acts like a longer chain surfactant system, but only when the chain of oil becomes sufficiently long.
期刊介绍:
ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis