{"title":"设计 MOx/Ni 反相催化剂,实现低温二氧化碳活化和高甲烷产率","authors":"Chuqiao Song, Jinjia Liu, Ruihang Wang, Xin Tang, Kun Wang, Zirui Gao, Mi Peng, Haibo Li, Siyu Yao, Feng Yang, Hanfeng Lu, Zuwei Liao, Xiao-Dong Wen, Ding Ma, Xiaonian Li, Lili Lin","doi":"10.1038/s44286-024-00122-5","DOIUrl":null,"url":null,"abstract":"Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs. Low-temperature CO2 methanation processes have potential for improved energy efficiency due to high equilibrium conversion but are generally limited by poor catalyst activity. Here the authors report an inverse CeZrOx/Ni catalyst that realizes high low-temperature (200 °C) methanation activity at ambient pressure.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 10","pages":"638-649"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields\",\"authors\":\"Chuqiao Song, Jinjia Liu, Ruihang Wang, Xin Tang, Kun Wang, Zirui Gao, Mi Peng, Haibo Li, Siyu Yao, Feng Yang, Hanfeng Lu, Zuwei Liao, Xiao-Dong Wen, Ding Ma, Xiaonian Li, Lili Lin\",\"doi\":\"10.1038/s44286-024-00122-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs. Low-temperature CO2 methanation processes have potential for improved energy efficiency due to high equilibrium conversion but are generally limited by poor catalyst activity. Here the authors report an inverse CeZrOx/Ni catalyst that realizes high low-temperature (200 °C) methanation activity at ambient pressure.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"1 10\",\"pages\":\"638-649\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-024-00122-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00122-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
低温甲烷化可以在常压下将二氧化碳近乎平衡地转化为甲烷,有望带来显著的能源效率和经济效益。然而,由于氢化中间产物的动力学限制,在低温下高效催化活化 CO2 仍具有挑战性。我们在此报告,与具有相同组成的传统镍/氧化物相比,由负载在金属镍载体上的氧化物纳米岛组成的镍基反相催化剂具有显著的活性优势。优化后的 CeZrOx/Ni 催化剂在 200 °C 和常压条件下可实现 ~90% 的 CO2 转化率和 >99% 的 CH4 选择性,同时还具有优异的长期稳定性和过热/启停循环操作稳定性。机理研究表明,反界面可有效调节 H2 和 CO2 的覆盖率,并改变吸附的含氧化合物的构型,从而有利于表面中间产物的氢化。能源和经济分析表明,采用反相催化剂的低温二氧化碳甲烷化工艺有可能降低资本投资和甲烷生产成本。
Engineering MOx/Ni inverse catalysts for low-temperature CO2 activation with high methane yields
Low-temperature methanation allows the near-equilibrium conversion of CO2 to methane at atmospheric pressure, promising remarkable energy efficiency and economic interests. However, it remains challenging for the efficient catalytic activation of CO2 at low temperature owing to the kinetic limitations of hydrogenation intermediates. Here we report that Ni-based inverse catalysts composed of oxide nano-islands loaded on metallic Ni support show significant activity advantages over traditional Ni/oxide with the same composition. The optimized CeZrOx/Ni catalyst realizes ~90% CO2 conversion and >99% CH4 selectivity at 200 °C and atmospheric pressure; it also exhibits excellent long-term stability and overheating/start–stop cyclic operation stability. Mechanistic studies show that the inverse interface effectively modulates H2 and CO2 coverage and alters the configuration of adsorbed oxygenates, which benefits the hydrogenation of surface intermediates. Energy and economic analyses demonstrate that the low-temperature CO2 methanation process powered by inverse catalysts potentially reduces both capital investment and methane production costs. Low-temperature CO2 methanation processes have potential for improved energy efficiency due to high equilibrium conversion but are generally limited by poor catalyst activity. Here the authors report an inverse CeZrOx/Ni catalyst that realizes high low-temperature (200 °C) methanation activity at ambient pressure.