基于模式的多点地质统计学用于钻孔数据的三维自动地质建模

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Jiateng Guo, Yufei Zheng, Zhibin Liu, Xulei Wang, Jianqiao Zhang, Xingzhou Zhang
{"title":"基于模式的多点地质统计学用于钻孔数据的三维自动地质建模","authors":"Jiateng Guo, Yufei Zheng, Zhibin Liu, Xulei Wang, Jianqiao Zhang, Xingzhou Zhang","doi":"10.1007/s11053-024-10405-6","DOIUrl":null,"url":null,"abstract":"<p>Urban 3D geological modeling is an essential approach for quickly understanding the underground geological structure of a city and guiding underground engineering construction. Modeling methods based on multiple-point geostatistics can provide probabilistic results regarding geological structure. The traditional multiple-point geostatistics modeling approach is characterized by low efficiency and typically relies on data from geological sections or conceptual models; therefore, it cannot be well applied to practical geological exploration projects that are based primarily on borehole data. In this paper, we propose a pattern-based multiple-point geostatistics modeling method PACSIM (pattern attribute classification simulation). This method uses borehole data as the primary data. First, geological structural information is extracted based on the borehole data to establish a training image database. Next, based on the distribution patterns of geological structures, a method for establishing attribute-based pattern databases is proposed to enhance modeling accuracy. Finally, a probability constraint strategy is introduced to address the distribution of complex strata and filter out grids with high certainty, thereby further improving the modeling accuracy. Based on the aforementioned strategies, a multiple-point geostatistics modeling workflow specifically targeting underground geological structures in urban areas was designed and subjected to practical verification. The results indicate that the proposed method required less time than the PSCSIM method, and improved the modeling efficiency by 72.87% while ensuring the accuracy of the modeling results. It can accurately identify relationships among complex strata and match the stratum distribution patterns revealed by borehole data, providing a reference for high-precision geological modeling in cases with high uncertainty.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"65 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern-Based Multiple-point Geostatistics for 3D Automatic Geological Modeling of Borehole Data\",\"authors\":\"Jiateng Guo, Yufei Zheng, Zhibin Liu, Xulei Wang, Jianqiao Zhang, Xingzhou Zhang\",\"doi\":\"10.1007/s11053-024-10405-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urban 3D geological modeling is an essential approach for quickly understanding the underground geological structure of a city and guiding underground engineering construction. Modeling methods based on multiple-point geostatistics can provide probabilistic results regarding geological structure. The traditional multiple-point geostatistics modeling approach is characterized by low efficiency and typically relies on data from geological sections or conceptual models; therefore, it cannot be well applied to practical geological exploration projects that are based primarily on borehole data. In this paper, we propose a pattern-based multiple-point geostatistics modeling method PACSIM (pattern attribute classification simulation). This method uses borehole data as the primary data. First, geological structural information is extracted based on the borehole data to establish a training image database. Next, based on the distribution patterns of geological structures, a method for establishing attribute-based pattern databases is proposed to enhance modeling accuracy. Finally, a probability constraint strategy is introduced to address the distribution of complex strata and filter out grids with high certainty, thereby further improving the modeling accuracy. Based on the aforementioned strategies, a multiple-point geostatistics modeling workflow specifically targeting underground geological structures in urban areas was designed and subjected to practical verification. The results indicate that the proposed method required less time than the PSCSIM method, and improved the modeling efficiency by 72.87% while ensuring the accuracy of the modeling results. It can accurately identify relationships among complex strata and match the stratum distribution patterns revealed by borehole data, providing a reference for high-precision geological modeling in cases with high uncertainty.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10405-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10405-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

城市三维地质建模是快速了解城市地下地质结构和指导地下工程建设的重要方法。基于多点地质统计的建模方法可以提供有关地质结构的概率结果。传统的多点地质统计建模方法效率较低,通常依赖于地质剖面数据或概念模型,因此不能很好地应用于主要基于钻孔数据的实际地质勘探项目。本文提出了一种基于模式的多点地质统计建模方法 PACSIM(模式属性分类模拟)。该方法以井眼数据为主要数据。首先,根据钻孔数据提取地质结构信息,建立训练图像数据库。其次,根据地质结构的分布模式,提出建立基于属性的模式数据库的方法,以提高建模精度。最后,针对复杂地层的分布,引入概率约束策略,筛选出确定性较高的网格,从而进一步提高建模精度。基于上述策略,设计了专门针对城市地下地质结构的多点地质统计建模工作流程,并进行了实际验证。结果表明,与 PSCSIM 方法相比,所提出的方法所需时间更短,在确保建模结果准确性的同时,建模效率提高了 72.87%。它能准确识别复杂地层之间的关系,并与钻孔数据揭示的地层分布模式相匹配,为高不确定性情况下的高精度地质建模提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pattern-Based Multiple-point Geostatistics for 3D Automatic Geological Modeling of Borehole Data

Pattern-Based Multiple-point Geostatistics for 3D Automatic Geological Modeling of Borehole Data

Urban 3D geological modeling is an essential approach for quickly understanding the underground geological structure of a city and guiding underground engineering construction. Modeling methods based on multiple-point geostatistics can provide probabilistic results regarding geological structure. The traditional multiple-point geostatistics modeling approach is characterized by low efficiency and typically relies on data from geological sections or conceptual models; therefore, it cannot be well applied to practical geological exploration projects that are based primarily on borehole data. In this paper, we propose a pattern-based multiple-point geostatistics modeling method PACSIM (pattern attribute classification simulation). This method uses borehole data as the primary data. First, geological structural information is extracted based on the borehole data to establish a training image database. Next, based on the distribution patterns of geological structures, a method for establishing attribute-based pattern databases is proposed to enhance modeling accuracy. Finally, a probability constraint strategy is introduced to address the distribution of complex strata and filter out grids with high certainty, thereby further improving the modeling accuracy. Based on the aforementioned strategies, a multiple-point geostatistics modeling workflow specifically targeting underground geological structures in urban areas was designed and subjected to practical verification. The results indicate that the proposed method required less time than the PSCSIM method, and improved the modeling efficiency by 72.87% while ensuring the accuracy of the modeling results. It can accurately identify relationships among complex strata and match the stratum distribution patterns revealed by borehole data, providing a reference for high-precision geological modeling in cases with high uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信