C Logan Pierpont, Jacob J Baroch, Matthew J Church, Scott R Miller
{"title":"嗜热蓝藻Synechococcus在光营养极限下的同源基因组进化","authors":"C Logan Pierpont, Jacob J Baroch, Matthew J Church, Scott R Miller","doi":"10.1093/ismejo/wrae184","DOIUrl":null,"url":null,"abstract":"Thermophilic microorganisms are expected to have smaller cells and genomes compared with mesophiles, a higher proportion of horizontally acquired genes, and distinct nucleotide and amino acid composition signatures. Here, we took an integrative approach to investigate these apparent correlates of thermophily for Synechococcus A/B cyanobacteria, which include the most heat-tolerant phototrophs on the planet. Phylogenomics confirmed a unique origin of different thermotolerance ecotypes, with low levels of continued gene flow between ecologically divergent but overlapping populations, which has shaped the distribution of phenotypic traits along these geothermal gradients. More thermotolerant strains do have smaller genomes, but genome reduction is associated with a decrease in community richness and metabolic diversity, rather than with cell size. Horizontal gene transfer played only a limited role during Synechococcus evolution, but, the most thermotolerant strains have acquired a Thermus tRNA modification enzyme that may stabilize translation at high temperatures. Although nucleotide base composition was not associated with thermotolerance, we found a general replacement of aspartate with glutamate, as well as a dramatic remodeling of amino acid composition at the highest temperatures that substantially differed from previous predictions. We conclude that Synechococcus A/B genome diversification largely does not conform to the standard view of temperature adaptation. In addition, carbon fixation was more thermolabile than photosynthetic oxygen evolution for the most thermotolerant strains compared with less tolerant lineages. This suggests that increased flow of reducing power generated during the light reactions to an electron sink(s) beyond carbon dioxide has emerged during temperature adaptation of these bacteria.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Idiosyncratic genome evolution of the thermophilic cyanobacterium Synechococcus at the limits of phototrophy\",\"authors\":\"C Logan Pierpont, Jacob J Baroch, Matthew J Church, Scott R Miller\",\"doi\":\"10.1093/ismejo/wrae184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermophilic microorganisms are expected to have smaller cells and genomes compared with mesophiles, a higher proportion of horizontally acquired genes, and distinct nucleotide and amino acid composition signatures. Here, we took an integrative approach to investigate these apparent correlates of thermophily for Synechococcus A/B cyanobacteria, which include the most heat-tolerant phototrophs on the planet. Phylogenomics confirmed a unique origin of different thermotolerance ecotypes, with low levels of continued gene flow between ecologically divergent but overlapping populations, which has shaped the distribution of phenotypic traits along these geothermal gradients. More thermotolerant strains do have smaller genomes, but genome reduction is associated with a decrease in community richness and metabolic diversity, rather than with cell size. Horizontal gene transfer played only a limited role during Synechococcus evolution, but, the most thermotolerant strains have acquired a Thermus tRNA modification enzyme that may stabilize translation at high temperatures. Although nucleotide base composition was not associated with thermotolerance, we found a general replacement of aspartate with glutamate, as well as a dramatic remodeling of amino acid composition at the highest temperatures that substantially differed from previous predictions. We conclude that Synechococcus A/B genome diversification largely does not conform to the standard view of temperature adaptation. In addition, carbon fixation was more thermolabile than photosynthetic oxygen evolution for the most thermotolerant strains compared with less tolerant lineages. This suggests that increased flow of reducing power generated during the light reactions to an electron sink(s) beyond carbon dioxide has emerged during temperature adaptation of these bacteria.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Idiosyncratic genome evolution of the thermophilic cyanobacterium Synechococcus at the limits of phototrophy
Thermophilic microorganisms are expected to have smaller cells and genomes compared with mesophiles, a higher proportion of horizontally acquired genes, and distinct nucleotide and amino acid composition signatures. Here, we took an integrative approach to investigate these apparent correlates of thermophily for Synechococcus A/B cyanobacteria, which include the most heat-tolerant phototrophs on the planet. Phylogenomics confirmed a unique origin of different thermotolerance ecotypes, with low levels of continued gene flow between ecologically divergent but overlapping populations, which has shaped the distribution of phenotypic traits along these geothermal gradients. More thermotolerant strains do have smaller genomes, but genome reduction is associated with a decrease in community richness and metabolic diversity, rather than with cell size. Horizontal gene transfer played only a limited role during Synechococcus evolution, but, the most thermotolerant strains have acquired a Thermus tRNA modification enzyme that may stabilize translation at high temperatures. Although nucleotide base composition was not associated with thermotolerance, we found a general replacement of aspartate with glutamate, as well as a dramatic remodeling of amino acid composition at the highest temperatures that substantially differed from previous predictions. We conclude that Synechococcus A/B genome diversification largely does not conform to the standard view of temperature adaptation. In addition, carbon fixation was more thermolabile than photosynthetic oxygen evolution for the most thermotolerant strains compared with less tolerant lineages. This suggests that increased flow of reducing power generated during the light reactions to an electron sink(s) beyond carbon dioxide has emerged during temperature adaptation of these bacteria.