Gregory S. McCarty, Carl J. Meunier, Leslie A. Sombers
{"title":"二氧噻吩/Nafion 聚合物复合膜在伏安法检测小神经肽时的可调尺寸选择性","authors":"Gregory S. McCarty, Carl J. Meunier, Leslie A. Sombers","doi":"10.1021/acssensors.4c00848","DOIUrl":null,"url":null,"abstract":"Carbon–fiber microelectrodes are proven and powerful sensors for electroanalytical measurements in a variety of environments, including complex systems such as the brain. They are used to detect and quantify a range of biological molecules, including neuropeptides, which are of broad interest for understanding physiological function. The enkephalins (met- and leu-) are endogenous opioid peptides that are involved in both pain and motivated behavior. Each is comprised of only five amino acids including tyrosine, an electroactive species. Electroanalytical measurements targeting tyrosine can reveal the dynamics of endogenous enkephalin transients in live tissue. However, when using electrochemistry in a biological system, selectivity is always a concern. Many larger neuropeptides also contain tyrosine. As such, they could generate a redox signature similar to that of the enkephalins, potentially confounding the measurement. In this work, three distinctly sized dioxythiophene monomers were mixed with Nafion and electrodeposited onto cylindrical carbon–fiber microelectrodes to form composite polymer films that allow for the tunable, size-based exclusion of larger molecules. The dioxythiophene monomers 3,4-ethylenedioxythiophene (EDOT), 3,4-propylenedioxythiophene (ProDOT), and 3,4-(2′,2′-diethylpropylene) dioxythiophene (ProDOT-Et<sub>2</sub>) were used to create nanostructured pores of increasing size. The dioxythiophene/Nafion modified electrodes were characterized in the voltammetric detection of dopamine, a classic small molecule neurotransmitter, and a series of tyrosine containing neuropeptides of increasing size: met-enkephalin (M-ENK; 5 residues), oxytocin (OXY; 9 residues), neurotensin (NT; 13 residues), and neuropeptide Y (NPY; 36 residues). The modified electrodes exhibited enhanced selectivity for smaller peptide species over larger peptides in a manner consistent with the size of the dioxythiophene monomer incorporated into the polymeric film, allowing for tunability in terms of size-based selective detection.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"200 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dioxythiophene/Nafion Polymer Composite Membranes for Tunable Size-Based Selectivity in the Voltammetric Detection of Small Neuropeptides\",\"authors\":\"Gregory S. McCarty, Carl J. Meunier, Leslie A. Sombers\",\"doi\":\"10.1021/acssensors.4c00848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon–fiber microelectrodes are proven and powerful sensors for electroanalytical measurements in a variety of environments, including complex systems such as the brain. They are used to detect and quantify a range of biological molecules, including neuropeptides, which are of broad interest for understanding physiological function. The enkephalins (met- and leu-) are endogenous opioid peptides that are involved in both pain and motivated behavior. Each is comprised of only five amino acids including tyrosine, an electroactive species. Electroanalytical measurements targeting tyrosine can reveal the dynamics of endogenous enkephalin transients in live tissue. However, when using electrochemistry in a biological system, selectivity is always a concern. Many larger neuropeptides also contain tyrosine. As such, they could generate a redox signature similar to that of the enkephalins, potentially confounding the measurement. In this work, three distinctly sized dioxythiophene monomers were mixed with Nafion and electrodeposited onto cylindrical carbon–fiber microelectrodes to form composite polymer films that allow for the tunable, size-based exclusion of larger molecules. The dioxythiophene monomers 3,4-ethylenedioxythiophene (EDOT), 3,4-propylenedioxythiophene (ProDOT), and 3,4-(2′,2′-diethylpropylene) dioxythiophene (ProDOT-Et<sub>2</sub>) were used to create nanostructured pores of increasing size. The dioxythiophene/Nafion modified electrodes were characterized in the voltammetric detection of dopamine, a classic small molecule neurotransmitter, and a series of tyrosine containing neuropeptides of increasing size: met-enkephalin (M-ENK; 5 residues), oxytocin (OXY; 9 residues), neurotensin (NT; 13 residues), and neuropeptide Y (NPY; 36 residues). The modified electrodes exhibited enhanced selectivity for smaller peptide species over larger peptides in a manner consistent with the size of the dioxythiophene monomer incorporated into the polymeric film, allowing for tunability in terms of size-based selective detection.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"200 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c00848\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c00848","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Dioxythiophene/Nafion Polymer Composite Membranes for Tunable Size-Based Selectivity in the Voltammetric Detection of Small Neuropeptides
Carbon–fiber microelectrodes are proven and powerful sensors for electroanalytical measurements in a variety of environments, including complex systems such as the brain. They are used to detect and quantify a range of biological molecules, including neuropeptides, which are of broad interest for understanding physiological function. The enkephalins (met- and leu-) are endogenous opioid peptides that are involved in both pain and motivated behavior. Each is comprised of only five amino acids including tyrosine, an electroactive species. Electroanalytical measurements targeting tyrosine can reveal the dynamics of endogenous enkephalin transients in live tissue. However, when using electrochemistry in a biological system, selectivity is always a concern. Many larger neuropeptides also contain tyrosine. As such, they could generate a redox signature similar to that of the enkephalins, potentially confounding the measurement. In this work, three distinctly sized dioxythiophene monomers were mixed with Nafion and electrodeposited onto cylindrical carbon–fiber microelectrodes to form composite polymer films that allow for the tunable, size-based exclusion of larger molecules. The dioxythiophene monomers 3,4-ethylenedioxythiophene (EDOT), 3,4-propylenedioxythiophene (ProDOT), and 3,4-(2′,2′-diethylpropylene) dioxythiophene (ProDOT-Et2) were used to create nanostructured pores of increasing size. The dioxythiophene/Nafion modified electrodes were characterized in the voltammetric detection of dopamine, a classic small molecule neurotransmitter, and a series of tyrosine containing neuropeptides of increasing size: met-enkephalin (M-ENK; 5 residues), oxytocin (OXY; 9 residues), neurotensin (NT; 13 residues), and neuropeptide Y (NPY; 36 residues). The modified electrodes exhibited enhanced selectivity for smaller peptide species over larger peptides in a manner consistent with the size of the dioxythiophene monomer incorporated into the polymeric film, allowing for tunability in terms of size-based selective detection.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.