{"title":"在金属上使用高宽比纳米柱阵列同时提高 WSe2 单光子发射器的亮度和纯度","authors":"Mayank Chhaperwal, Himanshu Madhukar Tongale, Patrick Hays, Kenji Watanabe, Takashi Taniguchi, Seth Ariel Tongay, Kausik Majumdar","doi":"10.1021/acs.nanolett.4c03168","DOIUrl":null,"url":null,"abstract":"A monolayer semiconductor transferred on nanopillar arrays provides site-controlled, on-chip single photon emission, which is a scalable light source platform for quantum technologies. However, the brightness of these emitters reported to date often falls short of the perceived requirement for such applications. Also, the single photon purity usually degrades as the brightness increases. Hence, there is a need for a design methodology to achieve an enhanced emission rate while maintaining high single photon purity. By using WSe<sub>2</sub> on high-aspect-ratio (∼3, at least 2-fold higher than previous reports) nanopillar arrays, here we demonstrate >10 MHz single photon emission rate in the 770–800 nm band that is compatible with quantum memory and repeater networks (Rb-87-D1/D2 lines) and satellite quantum communication. The emitters exhibit excellent purity (even at high emission rates) and improved out-coupling due to the use of a gold back reflector that quenches the emission away from the nanopillar.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneously Enhancing Brightness and Purity of WSe2 Single Photon Emitter Using High-Aspect-Ratio Nanopillar Array on Metal\",\"authors\":\"Mayank Chhaperwal, Himanshu Madhukar Tongale, Patrick Hays, Kenji Watanabe, Takashi Taniguchi, Seth Ariel Tongay, Kausik Majumdar\",\"doi\":\"10.1021/acs.nanolett.4c03168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A monolayer semiconductor transferred on nanopillar arrays provides site-controlled, on-chip single photon emission, which is a scalable light source platform for quantum technologies. However, the brightness of these emitters reported to date often falls short of the perceived requirement for such applications. Also, the single photon purity usually degrades as the brightness increases. Hence, there is a need for a design methodology to achieve an enhanced emission rate while maintaining high single photon purity. By using WSe<sub>2</sub> on high-aspect-ratio (∼3, at least 2-fold higher than previous reports) nanopillar arrays, here we demonstrate >10 MHz single photon emission rate in the 770–800 nm band that is compatible with quantum memory and repeater networks (Rb-87-D1/D2 lines) and satellite quantum communication. The emitters exhibit excellent purity (even at high emission rates) and improved out-coupling due to the use of a gold back reflector that quenches the emission away from the nanopillar.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c03168\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Simultaneously Enhancing Brightness and Purity of WSe2 Single Photon Emitter Using High-Aspect-Ratio Nanopillar Array on Metal
A monolayer semiconductor transferred on nanopillar arrays provides site-controlled, on-chip single photon emission, which is a scalable light source platform for quantum technologies. However, the brightness of these emitters reported to date often falls short of the perceived requirement for such applications. Also, the single photon purity usually degrades as the brightness increases. Hence, there is a need for a design methodology to achieve an enhanced emission rate while maintaining high single photon purity. By using WSe2 on high-aspect-ratio (∼3, at least 2-fold higher than previous reports) nanopillar arrays, here we demonstrate >10 MHz single photon emission rate in the 770–800 nm band that is compatible with quantum memory and repeater networks (Rb-87-D1/D2 lines) and satellite quantum communication. The emitters exhibit excellent purity (even at high emission rates) and improved out-coupling due to the use of a gold back reflector that quenches the emission away from the nanopillar.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.