Ilhan Bok, Jack Phillips, Tianxiang Zhu, Jennifer Lu, Elizabeth Detienne, Eduardo Andrade Lima, Benjamin P. Weiss, Alan Jasanoff, Aviad Hai
{"title":"利用纳米线圈传感器对神经活动进行磁探测","authors":"Ilhan Bok, Jack Phillips, Tianxiang Zhu, Jennifer Lu, Elizabeth Detienne, Eduardo Andrade Lima, Benjamin P. Weiss, Alan Jasanoff, Aviad Hai","doi":"10.1021/acs.nanolett.4c02784","DOIUrl":null,"url":null,"abstract":"Electrophysiological recordings from brain cells are performed routinely using implanted electrodes, but they traditionally require a wired connection to the outside of the brain. A completely passive, wireless device that does not require on-board power for active transmission but that still facilitates remote detection could open the door for mass-scale direct recording of action potentials and transform the way we acquire brain signals. We present a nanofabricated coil that forms a neuroelectromagnetic junction, yielding a highly enhanced magnetic field transduction of electrophysiology. We show that this micrometer-scale device enables remote magnetic detection of neuronal fields from the center of the coil using room temperature superconducting quantum interference device (SQUID) microscopy. Further, time-locked stimulation in conjunction with magnetometry demonstrates thresholding behavior that affirms the viability of the technology for detection with no requirement for wires or on-board power. This strategy may permit unprecedented detection of electrophysiology using magnetoencephalography and magnetic resonance imaging.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Detection of Neural Activity by Nanocoil Transducers\",\"authors\":\"Ilhan Bok, Jack Phillips, Tianxiang Zhu, Jennifer Lu, Elizabeth Detienne, Eduardo Andrade Lima, Benjamin P. Weiss, Alan Jasanoff, Aviad Hai\",\"doi\":\"10.1021/acs.nanolett.4c02784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrophysiological recordings from brain cells are performed routinely using implanted electrodes, but they traditionally require a wired connection to the outside of the brain. A completely passive, wireless device that does not require on-board power for active transmission but that still facilitates remote detection could open the door for mass-scale direct recording of action potentials and transform the way we acquire brain signals. We present a nanofabricated coil that forms a neuroelectromagnetic junction, yielding a highly enhanced magnetic field transduction of electrophysiology. We show that this micrometer-scale device enables remote magnetic detection of neuronal fields from the center of the coil using room temperature superconducting quantum interference device (SQUID) microscopy. Further, time-locked stimulation in conjunction with magnetometry demonstrates thresholding behavior that affirms the viability of the technology for detection with no requirement for wires or on-board power. This strategy may permit unprecedented detection of electrophysiology using magnetoencephalography and magnetic resonance imaging.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c02784\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c02784","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Magnetic Detection of Neural Activity by Nanocoil Transducers
Electrophysiological recordings from brain cells are performed routinely using implanted electrodes, but they traditionally require a wired connection to the outside of the brain. A completely passive, wireless device that does not require on-board power for active transmission but that still facilitates remote detection could open the door for mass-scale direct recording of action potentials and transform the way we acquire brain signals. We present a nanofabricated coil that forms a neuroelectromagnetic junction, yielding a highly enhanced magnetic field transduction of electrophysiology. We show that this micrometer-scale device enables remote magnetic detection of neuronal fields from the center of the coil using room temperature superconducting quantum interference device (SQUID) microscopy. Further, time-locked stimulation in conjunction with magnetometry demonstrates thresholding behavior that affirms the viability of the technology for detection with no requirement for wires or on-board power. This strategy may permit unprecedented detection of electrophysiology using magnetoencephalography and magnetic resonance imaging.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.