利用 PMBM 共轭递推进行扩展目标跟踪的后验克拉梅尔-拉奥下界

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Xingxiang Xie, Xiongwei Zhao, Zhumei Song, Kening Li
{"title":"利用 PMBM 共轭递推进行扩展目标跟踪的后验克拉梅尔-拉奥下界","authors":"Xingxiang Xie,&nbsp;Xiongwei Zhao,&nbsp;Zhumei Song,&nbsp;Kening Li","doi":"10.1049/ell2.70041","DOIUrl":null,"url":null,"abstract":"<p>This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi-target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi-Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"60 18","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70041","citationCount":"0","resultStr":"{\"title\":\"Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion\",\"authors\":\"Xingxiang Xie,&nbsp;Xiongwei Zhao,&nbsp;Zhumei Song,&nbsp;Kening Li\",\"doi\":\"10.1049/ell2.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi-target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi-Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"60 18\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信探讨了在随机有限集框架下,从一堆被模拟为随机变量的测量数据中进行扩展目标跟踪的后验克拉梅尔-拉奥下界(PCRLB)问题。传统 PCRLB 中的标量被转换成基于随机有限集的矢量,从而得出理论下限。这样,所提出的方法就可以应用于多目标跟踪问题,并适应目标各不相同的情况。此外,还考虑了解决泊松多贝努利混合滤波器共轭更新引起的四部分数据关联问题。仿真结果验证了推导出的 PCRLB 的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion

Posterior Cramér–Rao lower bounds for extended target tracking with PMBM conjugate recursion

This letter considers the posterior Cramér–Rao lower bounds (PCRLB) problem for extended target tracking from a stack of measurement data that are modelled as random variables in the random finite sets framework. The scalars in the traditional PCRLB are converted into vectors based on random finite sets to derive a theoretical lower bound. In this way, the proposed method can be applied to the multi-target tracking problem and accommodates scenarios with targets of varying. Moreover, solving the data association problem from four parts caused by the conjugate update of the Poisson multi-Bernoulli mixture filter is considered. Simulation results are presented to verify the effectiveness of the derived PCRLB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信