具有组合核的希尔伯特型积分算子的规范等价条件及其应用

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiong Liu
{"title":"具有组合核的希尔伯特型积分算子的规范等价条件及其应用","authors":"Qiong Liu","doi":"10.1016/j.amc.2024.129076","DOIUrl":null,"url":null,"abstract":"<div><div>Introducing adaptation parameters <span><math><mi>σ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, formal parameters <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>,</mo><mi>κ</mi><mo>,</mo><mi>τ</mi></math></span>, and type parameters <span><math><mi>μ</mi><mo>,</mo><mi>ν</mi></math></span>, the integration operator is defined as <span><math><mi>T</mi><mo>:</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>μ</mi><mover><mrow><mi>σ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo><mo>→</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mi>ν</mi><mover><mrow><mi>σ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span>, <span><math><mi>T</mi><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup><mo>+</mo><mi>κ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup><mo>+</mo><mi>τ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>. Using the weight function method, a general Hilbert-type integral inequality is obtained, thereby proving the boundedness of the operator. The constant factor of the general Hilbert-type inequality is the best possible if and only if the adaptation parameters satisfy <span><math><mi>σ</mi><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. From this, the formula for calculating the operator norm is obtained. In terms of application, some results from the references have been consolidated by discussing the combination of formal parameters and type parameters, and many new operator inequalities of different types and forms have been derived.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The equivalent conditions for norm of a Hilbert-type integral operator with a combination kernel and its applications\",\"authors\":\"Qiong Liu\",\"doi\":\"10.1016/j.amc.2024.129076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Introducing adaptation parameters <span><math><mi>σ</mi><mo>,</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, formal parameters <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>,</mo><mi>κ</mi><mo>,</mo><mi>τ</mi></math></span>, and type parameters <span><math><mi>μ</mi><mo>,</mo><mi>ν</mi></math></span>, the integration operator is defined as <span><math><mi>T</mi><mo>:</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>μ</mi><mover><mrow><mi>σ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>)</mo><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo><mo>→</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>p</mi><mi>ν</mi><mover><mrow><mi>σ</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>)</mo></math></span>, <span><math><mi>T</mi><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup><mo>+</mo><mi>κ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>λ</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup><mo>+</mo><mi>τ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>4</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>μ</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>ν</mi></mrow></msup></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>. Using the weight function method, a general Hilbert-type integral inequality is obtained, thereby proving the boundedness of the operator. The constant factor of the general Hilbert-type inequality is the best possible if and only if the adaptation parameters satisfy <span><math><mi>σ</mi><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. From this, the formula for calculating the operator norm is obtained. In terms of application, some results from the references have been consolidated by discussing the combination of formal parameters and type parameters, and many new operator inequalities of different types and forms have been derived.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009630032400537X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032400537X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

引入适应参数 σ,σ1、形式参数 λi(i=1,2,3,4),κ,τ 和类型参数 μ,ν,积分算子定义为 T:Lpp(1-μσˆ)-1(R+)→Lppνσˆ-1(R+),Tf(y)=∫R+eλ1xμyν+κe-λ2xμyνeλ3xμyν+τe-λ4xμyνf(x)dx,y∈R+。利用权函数方法,可以得到一般希尔伯特型积分不等式,从而证明算子的有界性。只有当且仅当适应参数满足 σ=σ1 时,一般希尔伯特型不等式的常数因子才是最好的。由此可以得到算子规范的计算公式。在应用方面,通过讨论形式参数和类型参数的结合,巩固了参考文献中的一些成果,并推导出许多不同类型和形式的新算子不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The equivalent conditions for norm of a Hilbert-type integral operator with a combination kernel and its applications
Introducing adaptation parameters σ,σ1, formal parameters λi(i=1,2,3,4),κ,τ, and type parameters μ,ν, the integration operator is defined as T:Lpp(1μσˆ)1(R+)Lppνσˆ1(R+), Tf(y)=R+eλ1xμyν+κeλ2xμyνeλ3xμyν+τeλ4xμyνf(x)dx,yR+. Using the weight function method, a general Hilbert-type integral inequality is obtained, thereby proving the boundedness of the operator. The constant factor of the general Hilbert-type inequality is the best possible if and only if the adaptation parameters satisfy σ=σ1. From this, the formula for calculating the operator norm is obtained. In terms of application, some results from the references have been consolidated by discussing the combination of formal parameters and type parameters, and many new operator inequalities of different types and forms have been derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信