LightingFormer:用于弱光图像增强的变换器-CNN 混合网络

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Cong Bi , Wenhua Qian , Jinde Cao , Xue Wang
{"title":"LightingFormer:用于弱光图像增强的变换器-CNN 混合网络","authors":"Cong Bi ,&nbsp;Wenhua Qian ,&nbsp;Jinde Cao ,&nbsp;Xue Wang","doi":"10.1016/j.cag.2024.104089","DOIUrl":null,"url":null,"abstract":"<div><div>Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low-light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"124 ","pages":"Article 104089"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LightingFormer: Transformer-CNN hybrid network for low-light image enhancement\",\"authors\":\"Cong Bi ,&nbsp;Wenhua Qian ,&nbsp;Jinde Cao ,&nbsp;Xue Wang\",\"doi\":\"10.1016/j.cag.2024.104089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low-light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.</div></div>\",\"PeriodicalId\":50628,\"journal\":{\"name\":\"Computers & Graphics-Uk\",\"volume\":\"124 \",\"pages\":\"Article 104089\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Graphics-Uk\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097849324002243\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849324002243","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

最近的深度学习方法在弱光图像增强方面取得了可喜的成果。然而,目前的方法往往受到噪声和伪影的影响,而且大多数方法都是基于卷积神经网络,在捕捉长程依赖性方面存在局限性,导致对低照度图像中极暗部分的恢复不足。为了解决这些问题,本文提出了一种基于 Transformer 的新型低照度图像增强网络,称为 LightingFormer。具体来说,我们提出了一种新颖的 Transformer-CNN 混合块,通过混合注意力捕捉全局和局部信息。它结合了 Transformer 在捕捉长距离依赖性方面的优势,以及 CNN 在提取低层次特征和增强局部性方面的优势,从而在弱光图像中恢复极暗部分并增强局部细节。此外,我们还采用 U-Net 鉴别器自适应增强弱光图像中的不同区域,避免曝光过度或曝光不足,抑制噪声和伪影。大量实验表明,我们的方法在数量和质量上都优于最先进的方法。此外,在物体检测中的应用也证明了我们的方法在高级视觉任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LightingFormer: Transformer-CNN hybrid network for low-light image enhancement

LightingFormer: Transformer-CNN hybrid network for low-light image enhancement
Recent deep-learning methods have shown promising results in low-light image enhancement. However, current methods often suffer from noise and artifacts, and most are based on convolutional neural networks, which have limitations in capturing long-range dependencies resulting in insufficient recovery of extremely dark parts in low-light images. To tackle these issues, this paper proposes a novel Transformer-based low-light image enhancement network called LightingFormer. Specifically, we propose a novel Transformer-CNN hybrid block that captures global and local information via mixed attention. It combines the advantages of the Transformer in capturing long-range dependencies and the advantages of CNNs in extracting low-level features and enhancing locality to recover extremely dark parts and enhance local details in low-light images. Moreover, we adopt the U-Net discriminator to enhance different regions in low-light images adaptively, avoiding overexposure or underexposure, and suppressing noise and artifacts. Extensive experiments show that our method outperforms the state-of-the-art methods quantitatively and qualitatively. Furthermore, the application to object detection demonstrates the potential of our method in high-level vision tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信