Kathrin J. Ward , Saskia Foerster , Sabine Chabrillat
{"title":"利用多时段 PRISMA 成像光谱数据估算土壤有机碳","authors":"Kathrin J. Ward , Saskia Foerster , Sabine Chabrillat","doi":"10.1016/j.geoderma.2024.117025","DOIUrl":null,"url":null,"abstract":"<div><div>Soils are the largest terrestrial carbon pool and a valuable good that provides important ecosystem services. Since soils are threatened by degradation and in order to fight climate change the knowledge of the status quo especially of its soil organic carbon (SOC) content is required. A promising tool to map and monitor our soils are spaceborne imaging spectrometers which are able to produce up-to-date, inexpensive and spatially explicit maps. Especially the recent launch of new imaging spectroscopy sensors with a high signal-to-noise ratio opens up new possibilities. One of those is the combination of multitemporal spaceborne imaging spectroscopy data into SOC composite maps with a higher spatial coverage. This study explores different multitemporal combination workflows in order to support finding a best practice. To our knowledge for the first time, a spatially more complete SOC composite map was generated using four PRISMA images recorded over the same study site in northern Germany. Two different workflows of computation were compared: workflow one, creates a synthetical bare soil composite using averaged spectra as a basis for model development. Workflow two uses compositing after individual SOC modeling for each image. Within these workflows, different approaches were tested to estimate the SOC content, amongst them are a range of SOC spectral features and a two-step local PLSR which replaces the wet-chemistry SOC analyses for model calibration and validation by laboratory spectra and a large scale soil spectral library. Results show that the best method to produce a multitemporal composite SOC map based on imaging spectroscopy data was workflow two: the SOC maps composite, using the SOC spectral feature approach (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.83, RPD = 2.42). While workflow two and the traditional PLSR approach was more robust for all input dates (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.79, RPD = 2.21). Best results of the single images reached R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.76-0.91 and RPD values ranging between 2.06-3.42. Three of the tested SOC spectral features provided accuracies comparable to the modeling approaches. These results are promising regarding the improvement of the spatial coverage and the refinement of the mapping and monitoring of SOC and other soil parameters. Further investigations in this direction are needed as they are precursors of what will be feasible by upcoming operational imaging spectroscopy missions with increased availability.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016706124002544/pdfft?md5=78bfac29bb6aca950664fba31be8a851&pid=1-s2.0-S0016706124002544-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Estimating Soil Organic Carbon using multitemporal PRISMA imaging spectroscopy data\",\"authors\":\"Kathrin J. Ward , Saskia Foerster , Sabine Chabrillat\",\"doi\":\"10.1016/j.geoderma.2024.117025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soils are the largest terrestrial carbon pool and a valuable good that provides important ecosystem services. Since soils are threatened by degradation and in order to fight climate change the knowledge of the status quo especially of its soil organic carbon (SOC) content is required. A promising tool to map and monitor our soils are spaceborne imaging spectrometers which are able to produce up-to-date, inexpensive and spatially explicit maps. Especially the recent launch of new imaging spectroscopy sensors with a high signal-to-noise ratio opens up new possibilities. One of those is the combination of multitemporal spaceborne imaging spectroscopy data into SOC composite maps with a higher spatial coverage. This study explores different multitemporal combination workflows in order to support finding a best practice. To our knowledge for the first time, a spatially more complete SOC composite map was generated using four PRISMA images recorded over the same study site in northern Germany. Two different workflows of computation were compared: workflow one, creates a synthetical bare soil composite using averaged spectra as a basis for model development. Workflow two uses compositing after individual SOC modeling for each image. Within these workflows, different approaches were tested to estimate the SOC content, amongst them are a range of SOC spectral features and a two-step local PLSR which replaces the wet-chemistry SOC analyses for model calibration and validation by laboratory spectra and a large scale soil spectral library. Results show that the best method to produce a multitemporal composite SOC map based on imaging spectroscopy data was workflow two: the SOC maps composite, using the SOC spectral feature approach (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.83, RPD = 2.42). While workflow two and the traditional PLSR approach was more robust for all input dates (R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> = 0.79, RPD = 2.21). Best results of the single images reached R<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span> values of 0.76-0.91 and RPD values ranging between 2.06-3.42. Three of the tested SOC spectral features provided accuracies comparable to the modeling approaches. These results are promising regarding the improvement of the spatial coverage and the refinement of the mapping and monitoring of SOC and other soil parameters. Further investigations in this direction are needed as they are precursors of what will be feasible by upcoming operational imaging spectroscopy missions with increased availability.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0016706124002544/pdfft?md5=78bfac29bb6aca950664fba31be8a851&pid=1-s2.0-S0016706124002544-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706124002544\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706124002544","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Estimating Soil Organic Carbon using multitemporal PRISMA imaging spectroscopy data
Soils are the largest terrestrial carbon pool and a valuable good that provides important ecosystem services. Since soils are threatened by degradation and in order to fight climate change the knowledge of the status quo especially of its soil organic carbon (SOC) content is required. A promising tool to map and monitor our soils are spaceborne imaging spectrometers which are able to produce up-to-date, inexpensive and spatially explicit maps. Especially the recent launch of new imaging spectroscopy sensors with a high signal-to-noise ratio opens up new possibilities. One of those is the combination of multitemporal spaceborne imaging spectroscopy data into SOC composite maps with a higher spatial coverage. This study explores different multitemporal combination workflows in order to support finding a best practice. To our knowledge for the first time, a spatially more complete SOC composite map was generated using four PRISMA images recorded over the same study site in northern Germany. Two different workflows of computation were compared: workflow one, creates a synthetical bare soil composite using averaged spectra as a basis for model development. Workflow two uses compositing after individual SOC modeling for each image. Within these workflows, different approaches were tested to estimate the SOC content, amongst them are a range of SOC spectral features and a two-step local PLSR which replaces the wet-chemistry SOC analyses for model calibration and validation by laboratory spectra and a large scale soil spectral library. Results show that the best method to produce a multitemporal composite SOC map based on imaging spectroscopy data was workflow two: the SOC maps composite, using the SOC spectral feature approach (R = 0.83, RPD = 2.42). While workflow two and the traditional PLSR approach was more robust for all input dates (R = 0.79, RPD = 2.21). Best results of the single images reached R values of 0.76-0.91 and RPD values ranging between 2.06-3.42. Three of the tested SOC spectral features provided accuracies comparable to the modeling approaches. These results are promising regarding the improvement of the spatial coverage and the refinement of the mapping and monitoring of SOC and other soil parameters. Further investigations in this direction are needed as they are precursors of what will be feasible by upcoming operational imaging spectroscopy missions with increased availability.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.