静水加载对夹紧圆板振动响应影响的综合分析、实验和数值研究

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS
Kyle Saltmarsh, Jie Pan, David Matthews, Ali Karrech
{"title":"静水加载对夹紧圆板振动响应影响的综合分析、实验和数值研究","authors":"Kyle Saltmarsh,&nbsp;Jie Pan,&nbsp;David Matthews,&nbsp;Ali Karrech","doi":"10.1016/j.apacoust.2024.110306","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive investigation, comprised of analytical, experimental and numerical approaches, into the interaction between a water cavity of varying fluid cavity height and the vibration of a thin circular plate subjected to its hydro-static pressure. We extend the application of the strong modal coupling method to derive a solution for this unexplored physical problem by utilising classic plate theory, Fourier-Bessel series formulation and the uncoupled solution of a thin clamped circular plate with uniform radial tension. Using a set of geometric and physical properties for the system, the resonance frequencies, response functions and non-dimensionalised added virtual mass incremental (NAVMI) factors are calculated and investigated as a function of hydro-static pressure and fluid cavity height, providing novel fundamental insights into the physical system. We construct an experimental rig to embody the conditions of the analytical investigation for the purpose of validation and to uncover experimental insights into the physical problem. Finite element analysis (FEA), employing modal analysis and transient dynamic analysis, is used to further validate and extend the analytical insights while more accurately mirroring the experimental conditions. The response functions, resonance frequencies and NAVMI factors and their dependence on the cavity pressure were experimentally measured and numerically simulated, with direct comparisons made with the analytical model. A high degree of accuracy for the analytical model is validated, along with its ability to describe the underlying physical phenomena. The validated analytical model is then leveraged to perform fundamental explorations into the modal compositions of the coupled system modes as a function of cavity height and hydro-pressure, the deformation of the coupled system mode shapes and a parametric sensitivity analysis on the effects of plate radii and plate thickness on the coupled system resonance frequencies and NAVMI factors. In totality, this study provides detailed modelling and prediction of the frequency response, resonance frequencies, added mass factors, modal contributions, and deformation of the coupled mode shapes, offering comprehensive insights with wide applicability.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0003682X24004572/pdfft?md5=3c3c55b2facc548ad9db17b2fa9e5e99&pid=1-s2.0-S0003682X24004572-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrated analytical, experimental, and numerical study of the effect of hydro-static loading on the vibrational response of clamped circular plates\",\"authors\":\"Kyle Saltmarsh,&nbsp;Jie Pan,&nbsp;David Matthews,&nbsp;Ali Karrech\",\"doi\":\"10.1016/j.apacoust.2024.110306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a comprehensive investigation, comprised of analytical, experimental and numerical approaches, into the interaction between a water cavity of varying fluid cavity height and the vibration of a thin circular plate subjected to its hydro-static pressure. We extend the application of the strong modal coupling method to derive a solution for this unexplored physical problem by utilising classic plate theory, Fourier-Bessel series formulation and the uncoupled solution of a thin clamped circular plate with uniform radial tension. Using a set of geometric and physical properties for the system, the resonance frequencies, response functions and non-dimensionalised added virtual mass incremental (NAVMI) factors are calculated and investigated as a function of hydro-static pressure and fluid cavity height, providing novel fundamental insights into the physical system. We construct an experimental rig to embody the conditions of the analytical investigation for the purpose of validation and to uncover experimental insights into the physical problem. Finite element analysis (FEA), employing modal analysis and transient dynamic analysis, is used to further validate and extend the analytical insights while more accurately mirroring the experimental conditions. The response functions, resonance frequencies and NAVMI factors and their dependence on the cavity pressure were experimentally measured and numerically simulated, with direct comparisons made with the analytical model. A high degree of accuracy for the analytical model is validated, along with its ability to describe the underlying physical phenomena. The validated analytical model is then leveraged to perform fundamental explorations into the modal compositions of the coupled system modes as a function of cavity height and hydro-pressure, the deformation of the coupled system mode shapes and a parametric sensitivity analysis on the effects of plate radii and plate thickness on the coupled system resonance frequencies and NAVMI factors. In totality, this study provides detailed modelling and prediction of the frequency response, resonance frequencies, added mass factors, modal contributions, and deformation of the coupled mode shapes, offering comprehensive insights with wide applicability.</div></div>\",\"PeriodicalId\":55506,\"journal\":{\"name\":\"Applied Acoustics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004572/pdfft?md5=3c3c55b2facc548ad9db17b2fa9e5e99&pid=1-s2.0-S0003682X24004572-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003682X24004572\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004572","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文通过分析、实验和数值方法,全面研究了不同流体腔高度的水腔与承受水静压的薄圆板振动之间的相互作用。我们扩展了强模态耦合方法的应用范围,利用经典的板理论、傅里叶-贝塞尔级数公式和具有均匀径向拉力的夹紧薄圆板的非耦合解,推导出这一未探索物理问题的解决方案。利用该系统的一系列几何和物理特性,计算并研究了共振频率、响应函数和非尺寸化虚拟质量增量(NAVMI)因子与静水压力和流体空腔高度的函数关系,为物理系统提供了新的基本见解。我们搭建了一个实验平台,以体现分析研究的条件,从而验证和揭示对物理问题的实验见解。有限元分析(FEA)采用模态分析和瞬态动态分析,在更准确地反映实验条件的同时,进一步验证和扩展了分析结果。对响应函数、共振频率和 NAVMI 因子及其与空腔压力的关系进行了实验测量和数值模拟,并与分析模型进行了直接比较。验证了分析模型的高度准确性及其描述基本物理现象的能力。然后,利用经过验证的分析模型,对作为空腔高度和水压函数的耦合系统模态组成、耦合系统模态形状的变形以及板半径和板厚度对耦合系统共振频率和 NAVMI 因子影响的参数敏感性分析进行了基本探索。总之,本研究提供了频率响应、共振频率、附加质量因子、模态贡献和耦合模态振型变形的详细建模和预测,提供了具有广泛适用性的全面见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated analytical, experimental, and numerical study of the effect of hydro-static loading on the vibrational response of clamped circular plates
This paper presents a comprehensive investigation, comprised of analytical, experimental and numerical approaches, into the interaction between a water cavity of varying fluid cavity height and the vibration of a thin circular plate subjected to its hydro-static pressure. We extend the application of the strong modal coupling method to derive a solution for this unexplored physical problem by utilising classic plate theory, Fourier-Bessel series formulation and the uncoupled solution of a thin clamped circular plate with uniform radial tension. Using a set of geometric and physical properties for the system, the resonance frequencies, response functions and non-dimensionalised added virtual mass incremental (NAVMI) factors are calculated and investigated as a function of hydro-static pressure and fluid cavity height, providing novel fundamental insights into the physical system. We construct an experimental rig to embody the conditions of the analytical investigation for the purpose of validation and to uncover experimental insights into the physical problem. Finite element analysis (FEA), employing modal analysis and transient dynamic analysis, is used to further validate and extend the analytical insights while more accurately mirroring the experimental conditions. The response functions, resonance frequencies and NAVMI factors and their dependence on the cavity pressure were experimentally measured and numerically simulated, with direct comparisons made with the analytical model. A high degree of accuracy for the analytical model is validated, along with its ability to describe the underlying physical phenomena. The validated analytical model is then leveraged to perform fundamental explorations into the modal compositions of the coupled system modes as a function of cavity height and hydro-pressure, the deformation of the coupled system mode shapes and a parametric sensitivity analysis on the effects of plate radii and plate thickness on the coupled system resonance frequencies and NAVMI factors. In totality, this study provides detailed modelling and prediction of the frequency response, resonance frequencies, added mass factors, modal contributions, and deformation of the coupled mode shapes, offering comprehensive insights with wide applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信