哈密尔顿系统的马斯洛夫型(L,P)指数和亚谐波 P 对称制动解

IF 2.4 2区 数学 Q1 MATHEMATICS
Duanzhi Zhang , Zhihao Zhao
{"title":"哈密尔顿系统的马斯洛夫型(L,P)指数和亚谐波 P 对称制动解","authors":"Duanzhi Zhang ,&nbsp;Zhihao Zhao","doi":"10.1016/j.jde.2024.09.037","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel iteration inequality for the Maslov-type <span><math><mo>(</mo><mi>L</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span>-index of iterated symplectic paths. Here, <em>P</em> is a fixed 2<em>n</em>-dimensional symplectic and orthogonal matrix satisfying <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><mi>I</mi></math></span>. These advancements in index theory are then applied to investigate the multiplicity of subharmonic solutions in Hamiltonian systems exhibiting dihedral equivariance with period <em>mτ</em>. Notably, a criterion of geometric distinction is established for two subharmonic <em>P</em>-symmetric brake orbits with periods <em>kmτ</em> and <em>lmτ</em> within the set <span><math><mo>{</mo><mi>k</mi><mi>m</mi><mi>τ</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>k</mi><mo>≡</mo><mn>1</mn><mtext> (mod </mtext><mi>m</mi><mo>)</mo><mo>}</mo></math></span>. This criterion is based on a lower bound estimate for the ratio <span><math><mi>l</mi><mo>/</mo><mi>k</mi></math></span>. Specifically, for odd <em>k</em>, the lower bound must be not less than <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>dim</mi><mo>⁡</mo><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>P</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mi>m</mi><mo>+</mo><mn>1</mn></math></span>, while for even <em>k</em>, it must be not less than <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>dim</mi><mo>⁡</mo><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>P</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>+</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mi>m</mi><mo>+</mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maslov-type (L,P)-index and subharmonic P-symmetric brake solutions for Hamiltonian systems\",\"authors\":\"Duanzhi Zhang ,&nbsp;Zhihao Zhao\",\"doi\":\"10.1016/j.jde.2024.09.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel iteration inequality for the Maslov-type <span><math><mo>(</mo><mi>L</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span>-index of iterated symplectic paths. Here, <em>P</em> is a fixed 2<em>n</em>-dimensional symplectic and orthogonal matrix satisfying <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>=</mo><mi>I</mi></math></span>. These advancements in index theory are then applied to investigate the multiplicity of subharmonic solutions in Hamiltonian systems exhibiting dihedral equivariance with period <em>mτ</em>. Notably, a criterion of geometric distinction is established for two subharmonic <em>P</em>-symmetric brake orbits with periods <em>kmτ</em> and <em>lmτ</em> within the set <span><math><mo>{</mo><mi>k</mi><mi>m</mi><mi>τ</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>k</mi><mo>≡</mo><mn>1</mn><mtext> (mod </mtext><mi>m</mi><mo>)</mo><mo>}</mo></math></span>. This criterion is based on a lower bound estimate for the ratio <span><math><mi>l</mi><mo>/</mo><mi>k</mi></math></span>. Specifically, for odd <em>k</em>, the lower bound must be not less than <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>dim</mi><mo>⁡</mo><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>P</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mi>m</mi><mo>+</mo><mn>1</mn></math></span>, while for even <em>k</em>, it must be not less than <span><math><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>dim</mi><mo>⁡</mo><mi>ker</mi><mo>⁡</mo><mo>(</mo><mi>P</mi><mo>−</mo><mi>I</mi><mo>)</mo><mo>+</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mi>m</mi><mo>+</mo><mn>1</mn></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002203962400620X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400620X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对迭代交映路径的马斯洛夫型(L,P)指数提出了一种新的迭代不等式。这里,P 是一个固定的 2n 维交映和正交矩阵,满足 Pm=I。指数理论的这些进展随后被应用于研究哈密顿系统中的次谐波解的多重性,该系统表现出周期为 mτ 的二面等差性。值得注意的是,在{kmτ|k≡1 (mod m)}集合内,建立了周期分别为 kmτ 和 lmτ 的两个次谐波 P 对称制动轨道的几何区分标准。这一标准基于 l/k 比率的下限估计值。具体来说,对于奇数 k,下限必须不小于 (12dimker(P-I)+2)m+1,而对于偶数 k,下限必须不小于 (12dimker(P-I)+n+2)m+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maslov-type (L,P)-index and subharmonic P-symmetric brake solutions for Hamiltonian systems
This paper introduces a novel iteration inequality for the Maslov-type (L,P)-index of iterated symplectic paths. Here, P is a fixed 2n-dimensional symplectic and orthogonal matrix satisfying Pm=I. These advancements in index theory are then applied to investigate the multiplicity of subharmonic solutions in Hamiltonian systems exhibiting dihedral equivariance with period . Notably, a criterion of geometric distinction is established for two subharmonic P-symmetric brake orbits with periods kmτ and lmτ within the set {kmτ|k1 (mod m)}. This criterion is based on a lower bound estimate for the ratio l/k. Specifically, for odd k, the lower bound must be not less than (12dimker(PI)+2)m+1, while for even k, it must be not less than (12dimker(PI)+n+2)m+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信