论开关标量动力系统的周期解

IF 2.4 2区 数学 Q1 MATHEMATICS
Xuejun Pan , Hongying Shu , Lin Wang , Xiang-Sheng Wang , Jianshe Yu
{"title":"论开关标量动力系统的周期解","authors":"Xuejun Pan ,&nbsp;Hongying Shu ,&nbsp;Lin Wang ,&nbsp;Xiang-Sheng Wang ,&nbsp;Jianshe Yu","doi":"10.1016/j.jde.2024.09.032","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the existence and stability of periodic solutions of switching dynamical systems consisting of two sub-equations. We first establish a general criterion to determine the stability of periodic solutions; namely, we derive the conditions under which the periodic solution is locally asymptotically stable, globally asymptotically stable, or unstable. Next, we develop general theorems to count the number of periodic solutions and find the basins of attractions for the periodic solutions and the trivial solution, respectively. As applications, we analyze two biological models in recent literature. Our general theorems not only reproduce the existing results in a unified and simpler manner but also lead to new and complete dynamical results including bistability of the periodic solution and the trivial solution. Numerical examples are also given to illustrate our theoretical results.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the periodic solutions of switching scalar dynamical systems\",\"authors\":\"Xuejun Pan ,&nbsp;Hongying Shu ,&nbsp;Lin Wang ,&nbsp;Xiang-Sheng Wang ,&nbsp;Jianshe Yu\",\"doi\":\"10.1016/j.jde.2024.09.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the existence and stability of periodic solutions of switching dynamical systems consisting of two sub-equations. We first establish a general criterion to determine the stability of periodic solutions; namely, we derive the conditions under which the periodic solution is locally asymptotically stable, globally asymptotically stable, or unstable. Next, we develop general theorems to count the number of periodic solutions and find the basins of attractions for the periodic solutions and the trivial solution, respectively. As applications, we analyze two biological models in recent literature. Our general theorems not only reproduce the existing results in a unified and simpler manner but also lead to new and complete dynamical results including bistability of the periodic solution and the trivial solution. Numerical examples are also given to illustrate our theoretical results.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006156\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006156","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了由两个子方程组成的切换动力系统的周期解的存在性和稳定性。我们首先建立了确定周期解稳定性的一般标准,即推导出周期解局部渐近稳定、全局渐近稳定或不稳定的条件。接着,我们提出了计算周期解数量的一般定理,并分别找到了周期解和三解的吸引盆地。作为应用,我们分析了近期文献中的两个生物模型。我们的一般定理不仅以统一和更简单的方式重现了现有结果,而且还带来了新的和完整的动力学结果,包括周期解和三元解的双稳态性。我们还给出了数值例子来说明我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the periodic solutions of switching scalar dynamical systems
In this paper, we investigate the existence and stability of periodic solutions of switching dynamical systems consisting of two sub-equations. We first establish a general criterion to determine the stability of periodic solutions; namely, we derive the conditions under which the periodic solution is locally asymptotically stable, globally asymptotically stable, or unstable. Next, we develop general theorems to count the number of periodic solutions and find the basins of attractions for the periodic solutions and the trivial solution, respectively. As applications, we analyze two biological models in recent literature. Our general theorems not only reproduce the existing results in a unified and simpler manner but also lead to new and complete dynamical results including bistability of the periodic solution and the trivial solution. Numerical examples are also given to illustrate our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信