具有奥利兹增长的非局部方程的沃尔夫势估计和维纳准则

IF 1.7 2区 数学 Q1 MATHEMATICS
Minhyun Kim , Ki-Ahm Lee , Se-Chan Lee
{"title":"具有奥利兹增长的非局部方程的沃尔夫势估计和维纳准则","authors":"Minhyun Kim ,&nbsp;Ki-Ahm Lee ,&nbsp;Se-Chan Lee","doi":"10.1016/j.jfa.2024.110690","DOIUrl":null,"url":null,"abstract":"<div><div>We prove the Wolff potential estimates for nonlocal equations with Orlicz growth. As an application, we obtain the Wiener criterion in this framework, which provides a necessary and sufficient condition for boundary points to be regular. Our approach relies on the fine analysis of superharmonic functions in view of nonlocal nonlinear potential theory.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wolff potential estimates and Wiener criterion for nonlocal equations with Orlicz growth\",\"authors\":\"Minhyun Kim ,&nbsp;Ki-Ahm Lee ,&nbsp;Se-Chan Lee\",\"doi\":\"10.1016/j.jfa.2024.110690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove the Wolff potential estimates for nonlocal equations with Orlicz growth. As an application, we obtain the Wiener criterion in this framework, which provides a necessary and sufficient condition for boundary points to be regular. Our approach relies on the fine analysis of superharmonic functions in view of nonlocal nonlinear potential theory.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624003781\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003781","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有奥立兹增长的非局部方程的沃尔夫势估计。作为应用,我们在此框架下获得了维纳准则,它为边界点的规则性提供了必要且充分的条件。我们的方法依赖于根据非局部非线性势理论对超谐函数进行精细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wolff potential estimates and Wiener criterion for nonlocal equations with Orlicz growth
We prove the Wolff potential estimates for nonlocal equations with Orlicz growth. As an application, we obtain the Wiener criterion in this framework, which provides a necessary and sufficient condition for boundary points to be regular. Our approach relies on the fine analysis of superharmonic functions in view of nonlocal nonlinear potential theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信