Kaicheng Yu , Qiang Gao , Yifeng Yao , Zexue Lin , Peng Zhang , Lihua Lu
{"title":"医用生物可降解水凝胶材料挤压印刷空间的湿度控制研究","authors":"Kaicheng Yu , Qiang Gao , Yifeng Yao , Zexue Lin , Peng Zhang , Lihua Lu","doi":"10.1016/j.addma.2024.104452","DOIUrl":null,"url":null,"abstract":"<div><div>Materials extrusion for medical biodegradable hydrogel manifests potential for the fabrication of biomimetic functionalized tissues in tissue engineering. However, the uncontrollable shape of 3D printed structures usually leads to shrinkage as well as collapse of the prepared biocompatible scaffold, which limits the potential to develop large-size tissue or organs. Uncontrollable ambient humidity during the 3D printing process is a primary cause of the moisture loss and geometric variation of prepared architectures, which means the humidity in the printing space of hydrogel materials must be controlled accurately throughout the extrusion process. This study proposed a novel configuration of humidity-controlled atmospheric enclosure, by which the humidity distribution in the printing space can be accurately regulated. Subsequently, a fluid-thermal-humidity coupling field simulation model based on the finite element method was established to numerically investigate the humidity field in the printing space. Furthermore, printing trials were conducted with the proposed atmospheric enclosure, and the moisture loss of 3D architecture was avoided. The size of the scaffold was improved evidently from 25 mm(length) × 25 mm(width) × 0.6 mm(height) to 25 mm(length) × 25 mm(width) × 3.5 mm(height).</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":null,"pages":null},"PeriodicalIF":10.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the humidity control in the printing space for the material extrusion of medical biodegradable hydrogel\",\"authors\":\"Kaicheng Yu , Qiang Gao , Yifeng Yao , Zexue Lin , Peng Zhang , Lihua Lu\",\"doi\":\"10.1016/j.addma.2024.104452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Materials extrusion for medical biodegradable hydrogel manifests potential for the fabrication of biomimetic functionalized tissues in tissue engineering. However, the uncontrollable shape of 3D printed structures usually leads to shrinkage as well as collapse of the prepared biocompatible scaffold, which limits the potential to develop large-size tissue or organs. Uncontrollable ambient humidity during the 3D printing process is a primary cause of the moisture loss and geometric variation of prepared architectures, which means the humidity in the printing space of hydrogel materials must be controlled accurately throughout the extrusion process. This study proposed a novel configuration of humidity-controlled atmospheric enclosure, by which the humidity distribution in the printing space can be accurately regulated. Subsequently, a fluid-thermal-humidity coupling field simulation model based on the finite element method was established to numerically investigate the humidity field in the printing space. Furthermore, printing trials were conducted with the proposed atmospheric enclosure, and the moisture loss of 3D architecture was avoided. The size of the scaffold was improved evidently from 25 mm(length) × 25 mm(width) × 0.6 mm(height) to 25 mm(length) × 25 mm(width) × 3.5 mm(height).</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424004986\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424004986","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Investigation of the humidity control in the printing space for the material extrusion of medical biodegradable hydrogel
Materials extrusion for medical biodegradable hydrogel manifests potential for the fabrication of biomimetic functionalized tissues in tissue engineering. However, the uncontrollable shape of 3D printed structures usually leads to shrinkage as well as collapse of the prepared biocompatible scaffold, which limits the potential to develop large-size tissue or organs. Uncontrollable ambient humidity during the 3D printing process is a primary cause of the moisture loss and geometric variation of prepared architectures, which means the humidity in the printing space of hydrogel materials must be controlled accurately throughout the extrusion process. This study proposed a novel configuration of humidity-controlled atmospheric enclosure, by which the humidity distribution in the printing space can be accurately regulated. Subsequently, a fluid-thermal-humidity coupling field simulation model based on the finite element method was established to numerically investigate the humidity field in the printing space. Furthermore, printing trials were conducted with the proposed atmospheric enclosure, and the moisture loss of 3D architecture was avoided. The size of the scaffold was improved evidently from 25 mm(length) × 25 mm(width) × 0.6 mm(height) to 25 mm(length) × 25 mm(width) × 3.5 mm(height).
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.