Xiaotong Kong , Teng Liu , Xin Chen , Xiaojun Jin , Aimin Li , Jialin Yu
{"title":"高效作物分割网和新型杂草检测方法","authors":"Xiaotong Kong , Teng Liu , Xin Chen , Xiaojun Jin , Aimin Li , Jialin Yu","doi":"10.1016/j.eja.2024.127367","DOIUrl":null,"url":null,"abstract":"<div><div>Computer vision-based precision weed control offers a promising avenue for reducing herbicide input and the associated costs of weed management. However, the substantial investments in time and labor required for the collection and annotation of weed image data pose challenges to develop effective deep learning models. The limitation also stems from the challenges in achieving accurate and reliable detection of weeds across varying growth stages, densities, and ecotypes in field scenarios. To address these issues, this research investigated a novel methodology employing a segmentation algorithm to accurately mark the contour information of crops in the image and detect weeds through image processing technology. Furthermore, a novel segmentation network was developed based on the YOLO architecture to address the substantial computing resource demands associated with segmentation algorithms. This was achieved through the design of a new backbone, incorporation of an attention mechanism, and modification of the feature fusion technique. The novel network achieved higher segmentation accuracy with less computational demands. The effectiveness of three different attention modules on segmentation tasks was additionally investigated. Experimental results showed that the insertion of Criss-cross Attention significantly improved the model's performance and was subsequently incorporated into our enhanced methodology. The enhanced model achieved a Mean Intersection over Union (mIoU50) of 90.9 %, with precision increasing by 5.9 % and Giga FLoating-point Operations Per Second (GFLOPs) reduced by 15.56 %, demonstrating enhanced suitability for deployment in resource-constrained computing environments. The findings presented in this study hold substantial theoretical and practical implications for precise weed management.</div></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":"161 ","pages":"Article 127367"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient crop segmentation net and novel weed detection method\",\"authors\":\"Xiaotong Kong , Teng Liu , Xin Chen , Xiaojun Jin , Aimin Li , Jialin Yu\",\"doi\":\"10.1016/j.eja.2024.127367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Computer vision-based precision weed control offers a promising avenue for reducing herbicide input and the associated costs of weed management. However, the substantial investments in time and labor required for the collection and annotation of weed image data pose challenges to develop effective deep learning models. The limitation also stems from the challenges in achieving accurate and reliable detection of weeds across varying growth stages, densities, and ecotypes in field scenarios. To address these issues, this research investigated a novel methodology employing a segmentation algorithm to accurately mark the contour information of crops in the image and detect weeds through image processing technology. Furthermore, a novel segmentation network was developed based on the YOLO architecture to address the substantial computing resource demands associated with segmentation algorithms. This was achieved through the design of a new backbone, incorporation of an attention mechanism, and modification of the feature fusion technique. The novel network achieved higher segmentation accuracy with less computational demands. The effectiveness of three different attention modules on segmentation tasks was additionally investigated. Experimental results showed that the insertion of Criss-cross Attention significantly improved the model's performance and was subsequently incorporated into our enhanced methodology. The enhanced model achieved a Mean Intersection over Union (mIoU50) of 90.9 %, with precision increasing by 5.9 % and Giga FLoating-point Operations Per Second (GFLOPs) reduced by 15.56 %, demonstrating enhanced suitability for deployment in resource-constrained computing environments. The findings presented in this study hold substantial theoretical and practical implications for precise weed management.</div></div>\",\"PeriodicalId\":51045,\"journal\":{\"name\":\"European Journal of Agronomy\",\"volume\":\"161 \",\"pages\":\"Article 127367\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1161030124002880\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124002880","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Efficient crop segmentation net and novel weed detection method
Computer vision-based precision weed control offers a promising avenue for reducing herbicide input and the associated costs of weed management. However, the substantial investments in time and labor required for the collection and annotation of weed image data pose challenges to develop effective deep learning models. The limitation also stems from the challenges in achieving accurate and reliable detection of weeds across varying growth stages, densities, and ecotypes in field scenarios. To address these issues, this research investigated a novel methodology employing a segmentation algorithm to accurately mark the contour information of crops in the image and detect weeds through image processing technology. Furthermore, a novel segmentation network was developed based on the YOLO architecture to address the substantial computing resource demands associated with segmentation algorithms. This was achieved through the design of a new backbone, incorporation of an attention mechanism, and modification of the feature fusion technique. The novel network achieved higher segmentation accuracy with less computational demands. The effectiveness of three different attention modules on segmentation tasks was additionally investigated. Experimental results showed that the insertion of Criss-cross Attention significantly improved the model's performance and was subsequently incorporated into our enhanced methodology. The enhanced model achieved a Mean Intersection over Union (mIoU50) of 90.9 %, with precision increasing by 5.9 % and Giga FLoating-point Operations Per Second (GFLOPs) reduced by 15.56 %, demonstrating enhanced suitability for deployment in resource-constrained computing environments. The findings presented in this study hold substantial theoretical and practical implications for precise weed management.
期刊介绍:
The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics:
crop physiology
crop production and management including irrigation, fertilization and soil management
agroclimatology and modelling
plant-soil relationships
crop quality and post-harvest physiology
farming and cropping systems
agroecosystems and the environment
crop-weed interactions and management
organic farming
horticultural crops
papers from the European Society for Agronomy bi-annual meetings
In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.