{"title":"基于关系图卷积神经网络的推荐图对比学习","authors":"Xiaoyang Liu , Hanwen Feng , Xiaoqin Zhang , Xia Zhou , Asgarali Bouyer","doi":"10.1016/j.jksuci.2024.102168","DOIUrl":null,"url":null,"abstract":"<div><div>Current knowledge graph-based recommendation methods heavily rely on high-quality knowledge graphs, often falling short in effectively addressing issues such as the cold start problem and heterogeneous noise in user interactions. This leads to biases in user interest and popularity. To overcome these challenges, this paper introduces a novel recommendation approach termed Knowledge-enhanced Perceptive Graph Attention with Graph Contrastive Learning (KPA-GCL), which leverages relational graph convolutional neural networks. The proposed method optimizes the triplet embedding representation of entity-item interactions based on relationships between adjacent entities in a heterogeneous graph. Subsequently, a graph convolutional neural network is employed for enhanced aggregation. Similarity scores from a contrastive view serve as the selection criterion for high-quality embedded representations, facilitating the extraction of refined knowledge subgraphs. Multiple adaptive contrast-loss optimization functions are introduced by combining Bayesian Personalized Ranking (BPR) and hard negative sampling techniques. Comparative experiments are conducted with ten popular existing methods using real public datasets. Results indicate that the KPA-GCL method outperforms compared methods in all datasets based on Recall, NDCG, Precision, and Hit-ratio measures. Furthermore, in terms of mitigating cold start and noise, the KPA-GCL method surpasses other ten methods. This validates the reasonability and effectiveness of KPA-GCL in real-world datasets.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S131915782400257X/pdfft?md5=d69bd7bfcc27dc9c754378e21af4a8b9&pid=1-s2.0-S131915782400257X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graph contrast learning for recommendation based on relational graph convolutional neural network\",\"authors\":\"Xiaoyang Liu , Hanwen Feng , Xiaoqin Zhang , Xia Zhou , Asgarali Bouyer\",\"doi\":\"10.1016/j.jksuci.2024.102168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Current knowledge graph-based recommendation methods heavily rely on high-quality knowledge graphs, often falling short in effectively addressing issues such as the cold start problem and heterogeneous noise in user interactions. This leads to biases in user interest and popularity. To overcome these challenges, this paper introduces a novel recommendation approach termed Knowledge-enhanced Perceptive Graph Attention with Graph Contrastive Learning (KPA-GCL), which leverages relational graph convolutional neural networks. The proposed method optimizes the triplet embedding representation of entity-item interactions based on relationships between adjacent entities in a heterogeneous graph. Subsequently, a graph convolutional neural network is employed for enhanced aggregation. Similarity scores from a contrastive view serve as the selection criterion for high-quality embedded representations, facilitating the extraction of refined knowledge subgraphs. Multiple adaptive contrast-loss optimization functions are introduced by combining Bayesian Personalized Ranking (BPR) and hard negative sampling techniques. Comparative experiments are conducted with ten popular existing methods using real public datasets. Results indicate that the KPA-GCL method outperforms compared methods in all datasets based on Recall, NDCG, Precision, and Hit-ratio measures. Furthermore, in terms of mitigating cold start and noise, the KPA-GCL method surpasses other ten methods. This validates the reasonability and effectiveness of KPA-GCL in real-world datasets.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S131915782400257X/pdfft?md5=d69bd7bfcc27dc9c754378e21af4a8b9&pid=1-s2.0-S131915782400257X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S131915782400257X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131915782400257X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Graph contrast learning for recommendation based on relational graph convolutional neural network
Current knowledge graph-based recommendation methods heavily rely on high-quality knowledge graphs, often falling short in effectively addressing issues such as the cold start problem and heterogeneous noise in user interactions. This leads to biases in user interest and popularity. To overcome these challenges, this paper introduces a novel recommendation approach termed Knowledge-enhanced Perceptive Graph Attention with Graph Contrastive Learning (KPA-GCL), which leverages relational graph convolutional neural networks. The proposed method optimizes the triplet embedding representation of entity-item interactions based on relationships between adjacent entities in a heterogeneous graph. Subsequently, a graph convolutional neural network is employed for enhanced aggregation. Similarity scores from a contrastive view serve as the selection criterion for high-quality embedded representations, facilitating the extraction of refined knowledge subgraphs. Multiple adaptive contrast-loss optimization functions are introduced by combining Bayesian Personalized Ranking (BPR) and hard negative sampling techniques. Comparative experiments are conducted with ten popular existing methods using real public datasets. Results indicate that the KPA-GCL method outperforms compared methods in all datasets based on Recall, NDCG, Precision, and Hit-ratio measures. Furthermore, in terms of mitigating cold start and noise, the KPA-GCL method surpasses other ten methods. This validates the reasonability and effectiveness of KPA-GCL in real-world datasets.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.