Jun Zhang , Wenjun Nie , Mintae Kim , Xianghong He , Dahu Rui , Weidong Pan
{"title":"通过人工冻结和竖井冲洗对重金属污染粘性土壤进行原位修复的模型试验","authors":"Jun Zhang , Wenjun Nie , Mintae Kim , Xianghong He , Dahu Rui , Weidong Pan","doi":"10.1016/j.coldregions.2024.104330","DOIUrl":null,"url":null,"abstract":"<div><div>The low permeability of clayey soil and the pressure of liquid extraction and injection tend to form preferential flow paths in the soil, diminishing the remediation efficiency of shaft washing. Therefore, a new in-situ repair method combining artificial freezing and shaft washing is proposed. Using Pb and Cd contaminated clayey soil as the research object, in-situ model tests of different eluent types, concentrations, and suction modes were conducted to investigate the removal rate of heavy metals and the distribution of temperature and water field. The results demonstrated that the artificial freezing method can effectively induce the water (eluent) migration from the unfrozen zone to the freezing front. Besides, it effectively resolved the issue of poor washing efficiency caused by preferential flow between the extraction and injection wells during the extraction process. After five freeze-thaw cycles, the removal rate of Pb and Cd reached 46.16 % and 59.04 %, respectively. The combination of artificial freezing and plastic drainage plate technology merges artificial freezing and shaft washing methods to achieve the remediation of heavy metal-contaminated soil, providing a reference for the in-situ remediation of heavy metal-contaminated clayey soil.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"228 ","pages":"Article 104330"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model test of in-situ remediation for heavy metal-contaminated clayey soil by artificial freezing and shaft washing\",\"authors\":\"Jun Zhang , Wenjun Nie , Mintae Kim , Xianghong He , Dahu Rui , Weidong Pan\",\"doi\":\"10.1016/j.coldregions.2024.104330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The low permeability of clayey soil and the pressure of liquid extraction and injection tend to form preferential flow paths in the soil, diminishing the remediation efficiency of shaft washing. Therefore, a new in-situ repair method combining artificial freezing and shaft washing is proposed. Using Pb and Cd contaminated clayey soil as the research object, in-situ model tests of different eluent types, concentrations, and suction modes were conducted to investigate the removal rate of heavy metals and the distribution of temperature and water field. The results demonstrated that the artificial freezing method can effectively induce the water (eluent) migration from the unfrozen zone to the freezing front. Besides, it effectively resolved the issue of poor washing efficiency caused by preferential flow between the extraction and injection wells during the extraction process. After five freeze-thaw cycles, the removal rate of Pb and Cd reached 46.16 % and 59.04 %, respectively. The combination of artificial freezing and plastic drainage plate technology merges artificial freezing and shaft washing methods to achieve the remediation of heavy metal-contaminated soil, providing a reference for the in-situ remediation of heavy metal-contaminated clayey soil.</div></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"228 \",\"pages\":\"Article 104330\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24002118\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002118","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Model test of in-situ remediation for heavy metal-contaminated clayey soil by artificial freezing and shaft washing
The low permeability of clayey soil and the pressure of liquid extraction and injection tend to form preferential flow paths in the soil, diminishing the remediation efficiency of shaft washing. Therefore, a new in-situ repair method combining artificial freezing and shaft washing is proposed. Using Pb and Cd contaminated clayey soil as the research object, in-situ model tests of different eluent types, concentrations, and suction modes were conducted to investigate the removal rate of heavy metals and the distribution of temperature and water field. The results demonstrated that the artificial freezing method can effectively induce the water (eluent) migration from the unfrozen zone to the freezing front. Besides, it effectively resolved the issue of poor washing efficiency caused by preferential flow between the extraction and injection wells during the extraction process. After five freeze-thaw cycles, the removal rate of Pb and Cd reached 46.16 % and 59.04 %, respectively. The combination of artificial freezing and plastic drainage plate technology merges artificial freezing and shaft washing methods to achieve the remediation of heavy metal-contaminated soil, providing a reference for the in-situ remediation of heavy metal-contaminated clayey soil.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.