{"title":"流函数形式的二维纳维-斯托克斯方程混合虚拟元素法","authors":"Xi Zhang , Minfu Feng","doi":"10.1016/j.camwa.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the formulation and analysis of a <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> conforming mixed virtual element method (VEM) for the two-dimensional stationary incompressible Navier-Stokes (NS) equations in stream-function formulation. By representing the velocity field as the curl of a stream function, we recast the second-order NS system into a fourth-order nonlinear equation for the scalar stream function, inherently satisfying the incompressibility constraint. Introducing a vorticity variable enables construction of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> conforming VEM spaces for both stream function and vorticity and circumventing stringent <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> continuity constraints. The proposed method provides an initial exploration of stream function-vorticity discretizations on general polygonal meshes using the flexible VEM of arbitrary order. Existence and uniqueness of discrete solutions are established theoretically under a small data assumption. Optimal error estimates are then derived in the energy norm for the stream function, <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> norm for the stream function and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo></math></span> norm for the vorticity, rigorously demonstrating convergence. Numerical results validate the error analysis and illustrate the accuracy and robustness of the mixed VEM for simulation of incompressible flows on complex geometries.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mixed virtual element method for the two-dimensional Navier-Stokes equations in stream-function formulation\",\"authors\":\"Xi Zhang , Minfu Feng\",\"doi\":\"10.1016/j.camwa.2024.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents the formulation and analysis of a <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> conforming mixed virtual element method (VEM) for the two-dimensional stationary incompressible Navier-Stokes (NS) equations in stream-function formulation. By representing the velocity field as the curl of a stream function, we recast the second-order NS system into a fourth-order nonlinear equation for the scalar stream function, inherently satisfying the incompressibility constraint. Introducing a vorticity variable enables construction of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> conforming VEM spaces for both stream function and vorticity and circumventing stringent <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> continuity constraints. The proposed method provides an initial exploration of stream function-vorticity discretizations on general polygonal meshes using the flexible VEM of arbitrary order. Existence and uniqueness of discrete solutions are established theoretically under a small data assumption. Optimal error estimates are then derived in the energy norm for the stream function, <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>−</mo></math></span> norm for the stream function and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo></math></span> norm for the vorticity, rigorously demonstrating convergence. Numerical results validate the error analysis and illustrate the accuracy and robustness of the mixed VEM for simulation of incompressible flows on complex geometries.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004292\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004292","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A mixed virtual element method for the two-dimensional Navier-Stokes equations in stream-function formulation
This work presents the formulation and analysis of a conforming mixed virtual element method (VEM) for the two-dimensional stationary incompressible Navier-Stokes (NS) equations in stream-function formulation. By representing the velocity field as the curl of a stream function, we recast the second-order NS system into a fourth-order nonlinear equation for the scalar stream function, inherently satisfying the incompressibility constraint. Introducing a vorticity variable enables construction of conforming VEM spaces for both stream function and vorticity and circumventing stringent continuity constraints. The proposed method provides an initial exploration of stream function-vorticity discretizations on general polygonal meshes using the flexible VEM of arbitrary order. Existence and uniqueness of discrete solutions are established theoretically under a small data assumption. Optimal error estimates are then derived in the energy norm for the stream function, norm for the stream function and norm for the vorticity, rigorously demonstrating convergence. Numerical results validate the error analysis and illustrate the accuracy and robustness of the mixed VEM for simulation of incompressible flows on complex geometries.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).