{"title":"关于达到规范的布洛赫映射","authors":"A. Jiménez-Vargas , Moisés Villegas-Vallecillos","doi":"10.1016/j.jmaa.2024.128901","DOIUrl":null,"url":null,"abstract":"<div><div>Given a complex Banach space <em>X</em>, let <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> denote the space of all normalized Bloch maps from the open complex unit disc <span><math><mi>D</mi></math></span> into <em>X</em>. We prove that the set of all maps in <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> which attain their Bloch norms is norm dense in <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our approach is based on a previous study of the extremal structure of the unit closed ball of <span><math><mi>G</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> (the Bloch-free Banach space over <span><math><mi>D</mi></math></span>). We prove that normalized Bloch atoms of <span><math><mi>D</mi></math></span> are precisely the only extreme points of that ball and, in fact, they are strongly exposed points. Moreover, we characterize the surjective linear isometries of <span><math><mi>G</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> involved the Möbius transformations of <span><math><mi>D</mi></math></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On norm attaining Bloch maps\",\"authors\":\"A. Jiménez-Vargas , Moisés Villegas-Vallecillos\",\"doi\":\"10.1016/j.jmaa.2024.128901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a complex Banach space <em>X</em>, let <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> denote the space of all normalized Bloch maps from the open complex unit disc <span><math><mi>D</mi></math></span> into <em>X</em>. We prove that the set of all maps in <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> which attain their Bloch norms is norm dense in <span><math><mover><mrow><mi>B</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>D</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>. Our approach is based on a previous study of the extremal structure of the unit closed ball of <span><math><mi>G</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> (the Bloch-free Banach space over <span><math><mi>D</mi></math></span>). We prove that normalized Bloch atoms of <span><math><mi>D</mi></math></span> are precisely the only extreme points of that ball and, in fact, they are strongly exposed points. Moreover, we characterize the surjective linear isometries of <span><math><mi>G</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> involved the Möbius transformations of <span><math><mi>D</mi></math></span>.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008230\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008230","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
给定复巴纳赫空间 X,让 Bˆ(D,X)表示从开阔复单位圆盘 D 到 X 的所有归一化布洛赫映射的空间。我们将证明,Bˆ(D,X)中所有达到布洛赫规范的映射的集合在 Bˆ(D,X)中是规范密集的。我们的方法基于之前对 G(D)(D 上无布洛赫的巴拿赫空间)单位闭球极值结构的研究。我们证明,D 的归一化布洛赫原子正是该球的唯一极值点,事实上,它们是强暴露点。此外,我们还描述了涉及 D 的莫比乌斯变换的 G(D) 的投射线性等距。
Given a complex Banach space X, let denote the space of all normalized Bloch maps from the open complex unit disc into X. We prove that the set of all maps in which attain their Bloch norms is norm dense in . Our approach is based on a previous study of the extremal structure of the unit closed ball of (the Bloch-free Banach space over ). We prove that normalized Bloch atoms of are precisely the only extreme points of that ball and, in fact, they are strongly exposed points. Moreover, we characterize the surjective linear isometries of involved the Möbius transformations of .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.