嵌入过渡金属(铜、铁和锰)原子的 GaN@MoSSe 异质结构检测有害气体(NO、NO2):DFT 研究

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yufan Bo , Qihao Zhang , Xiaodong Yang , Baolin Wang , Yang Shen
{"title":"嵌入过渡金属(铜、铁和锰)原子的 GaN@MoSSe 异质结构检测有害气体(NO、NO2):DFT 研究","authors":"Yufan Bo ,&nbsp;Qihao Zhang ,&nbsp;Xiaodong Yang ,&nbsp;Baolin Wang ,&nbsp;Yang Shen","doi":"10.1016/j.surfin.2024.105151","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring and identifying air pollutants, such as NO and NO<sub>2</sub>, is crucial due to their detrimental impact on both the environment and human health. This work employs density functional theory (DFT) with the PBE + <em>U</em> functional to investigate the adsorption and sensing performance of NO and NO<sub>2</sub> on transition metal (TM)-doped GaN@MoSSe heterostructures. The adsorption energy, charge transfer, electron localization functions, charge density difference, spin density, band gaps and density of states are analyzed. The findings reveal that a transition from physisorption to chemisorption occurs after TM atoms doping. Also, when the surface is embedded with Cu, Fe and Mn atoms, there is a significant improvement in the behavior related to gas adsorption. The bandgap and its variations lead to the change in surface electrical conductivity, thereby affecting the gas sensitivity of the adsorption system. Particularly, the Cu<sub>Ga</sub>-GaN@MoSSe and Fe<sub>Ga</sub>-GaN@MoSSe systems exhibit improved gas sensitivity toward NO due to their significant band gap reduction. Meanwhile, the Cu<sub>Se−</sub>MoSSe@GaN, Cu<sub>Ga</sub>-GaN@MoSSe, Fe<sub>Ga</sub>-GaN@MoSSe and Mn<sub>Ga</sub>-GaN@MoSSe systems also demonstrate enhanced sensing capabilities for NO<sub>2</sub>. This work offers valuable theoretical insights for exploring the potential applications of TM-GaN@MoSSe heterostructures in gas sensing.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of harmful gases (NO, NO2) by GaN@MoSSe heterostructures embedded with transition metal (Cu, Fe and Mn) atoms: A DFT study\",\"authors\":\"Yufan Bo ,&nbsp;Qihao Zhang ,&nbsp;Xiaodong Yang ,&nbsp;Baolin Wang ,&nbsp;Yang Shen\",\"doi\":\"10.1016/j.surfin.2024.105151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring and identifying air pollutants, such as NO and NO<sub>2</sub>, is crucial due to their detrimental impact on both the environment and human health. This work employs density functional theory (DFT) with the PBE + <em>U</em> functional to investigate the adsorption and sensing performance of NO and NO<sub>2</sub> on transition metal (TM)-doped GaN@MoSSe heterostructures. The adsorption energy, charge transfer, electron localization functions, charge density difference, spin density, band gaps and density of states are analyzed. The findings reveal that a transition from physisorption to chemisorption occurs after TM atoms doping. Also, when the surface is embedded with Cu, Fe and Mn atoms, there is a significant improvement in the behavior related to gas adsorption. The bandgap and its variations lead to the change in surface electrical conductivity, thereby affecting the gas sensitivity of the adsorption system. Particularly, the Cu<sub>Ga</sub>-GaN@MoSSe and Fe<sub>Ga</sub>-GaN@MoSSe systems exhibit improved gas sensitivity toward NO due to their significant band gap reduction. Meanwhile, the Cu<sub>Se−</sub>MoSSe@GaN, Cu<sub>Ga</sub>-GaN@MoSSe, Fe<sub>Ga</sub>-GaN@MoSSe and Mn<sub>Ga</sub>-GaN@MoSSe systems also demonstrate enhanced sensing capabilities for NO<sub>2</sub>. This work offers valuable theoretical insights for exploring the potential applications of TM-GaN@MoSSe heterostructures in gas sensing.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024013075\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013075","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于氮氧化物和二氧化氮等空气污染物对环境和人类健康的有害影响,监测和识别这些污染物至关重要。本研究采用 PBE + U 函数的密度泛函理论(DFT)研究了氮氧化物和二氧化氮在过渡金属(TM)掺杂的 GaN@MoSSe 异质结构上的吸附和传感性能。研究分析了吸附能、电荷转移、电子局域函数、电荷密度差、自旋密度、带隙和态密度。研究结果表明,掺杂 TM 原子后,会发生从物理吸附到化学吸附的转变。此外,当表面掺入铜、铁和锰原子时,与气体吸附有关的行为也会得到显著改善。带隙及其变化会导致表面导电率的变化,从而影响吸附系统对气体的敏感性。特别是 CuGa-GaN@MoSSe 和 FeGa-GaN@MoSSe 系统,由于它们的带隙显著减小,对 NO 的气体灵敏度有所提高。与此同时,CuSe-MoSSe@GaN、CuGa-GaN@MoSSe、FeGa-GaN@MoSSe 和 MnGa-GaN@MoSSe 系统也显示出对 NO2 更强的传感能力。这项工作为探索 TM-GaN@MoSSe 异质结构在气体传感中的潜在应用提供了宝贵的理论见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Detection of harmful gases (NO, NO2) by GaN@MoSSe heterostructures embedded with transition metal (Cu, Fe and Mn) atoms: A DFT study

Detection of harmful gases (NO, NO2) by GaN@MoSSe heterostructures embedded with transition metal (Cu, Fe and Mn) atoms: A DFT study
Monitoring and identifying air pollutants, such as NO and NO2, is crucial due to their detrimental impact on both the environment and human health. This work employs density functional theory (DFT) with the PBE + U functional to investigate the adsorption and sensing performance of NO and NO2 on transition metal (TM)-doped GaN@MoSSe heterostructures. The adsorption energy, charge transfer, electron localization functions, charge density difference, spin density, band gaps and density of states are analyzed. The findings reveal that a transition from physisorption to chemisorption occurs after TM atoms doping. Also, when the surface is embedded with Cu, Fe and Mn atoms, there is a significant improvement in the behavior related to gas adsorption. The bandgap and its variations lead to the change in surface electrical conductivity, thereby affecting the gas sensitivity of the adsorption system. Particularly, the CuGa-GaN@MoSSe and FeGa-GaN@MoSSe systems exhibit improved gas sensitivity toward NO due to their significant band gap reduction. Meanwhile, the CuSe−MoSSe@GaN, CuGa-GaN@MoSSe, FeGa-GaN@MoSSe and MnGa-GaN@MoSSe systems also demonstrate enhanced sensing capabilities for NO2. This work offers valuable theoretical insights for exploring the potential applications of TM-GaN@MoSSe heterostructures in gas sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信