Yufan Bo , Qihao Zhang , Xiaodong Yang , Baolin Wang , Yang Shen
{"title":"嵌入过渡金属(铜、铁和锰)原子的 GaN@MoSSe 异质结构检测有害气体(NO、NO2):DFT 研究","authors":"Yufan Bo , Qihao Zhang , Xiaodong Yang , Baolin Wang , Yang Shen","doi":"10.1016/j.surfin.2024.105151","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring and identifying air pollutants, such as NO and NO<sub>2</sub>, is crucial due to their detrimental impact on both the environment and human health. This work employs density functional theory (DFT) with the PBE + <em>U</em> functional to investigate the adsorption and sensing performance of NO and NO<sub>2</sub> on transition metal (TM)-doped GaN@MoSSe heterostructures. The adsorption energy, charge transfer, electron localization functions, charge density difference, spin density, band gaps and density of states are analyzed. The findings reveal that a transition from physisorption to chemisorption occurs after TM atoms doping. Also, when the surface is embedded with Cu, Fe and Mn atoms, there is a significant improvement in the behavior related to gas adsorption. The bandgap and its variations lead to the change in surface electrical conductivity, thereby affecting the gas sensitivity of the adsorption system. Particularly, the Cu<sub>Ga</sub>-GaN@MoSSe and Fe<sub>Ga</sub>-GaN@MoSSe systems exhibit improved gas sensitivity toward NO due to their significant band gap reduction. Meanwhile, the Cu<sub>Se−</sub>MoSSe@GaN, Cu<sub>Ga</sub>-GaN@MoSSe, Fe<sub>Ga</sub>-GaN@MoSSe and Mn<sub>Ga</sub>-GaN@MoSSe systems also demonstrate enhanced sensing capabilities for NO<sub>2</sub>. This work offers valuable theoretical insights for exploring the potential applications of TM-GaN@MoSSe heterostructures in gas sensing.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"54 ","pages":"Article 105151"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of harmful gases (NO, NO2) by GaN@MoSSe heterostructures embedded with transition metal (Cu, Fe and Mn) atoms: A DFT study\",\"authors\":\"Yufan Bo , Qihao Zhang , Xiaodong Yang , Baolin Wang , Yang Shen\",\"doi\":\"10.1016/j.surfin.2024.105151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring and identifying air pollutants, such as NO and NO<sub>2</sub>, is crucial due to their detrimental impact on both the environment and human health. This work employs density functional theory (DFT) with the PBE + <em>U</em> functional to investigate the adsorption and sensing performance of NO and NO<sub>2</sub> on transition metal (TM)-doped GaN@MoSSe heterostructures. The adsorption energy, charge transfer, electron localization functions, charge density difference, spin density, band gaps and density of states are analyzed. The findings reveal that a transition from physisorption to chemisorption occurs after TM atoms doping. Also, when the surface is embedded with Cu, Fe and Mn atoms, there is a significant improvement in the behavior related to gas adsorption. The bandgap and its variations lead to the change in surface electrical conductivity, thereby affecting the gas sensitivity of the adsorption system. Particularly, the Cu<sub>Ga</sub>-GaN@MoSSe and Fe<sub>Ga</sub>-GaN@MoSSe systems exhibit improved gas sensitivity toward NO due to their significant band gap reduction. Meanwhile, the Cu<sub>Se−</sub>MoSSe@GaN, Cu<sub>Ga</sub>-GaN@MoSSe, Fe<sub>Ga</sub>-GaN@MoSSe and Mn<sub>Ga</sub>-GaN@MoSSe systems also demonstrate enhanced sensing capabilities for NO<sub>2</sub>. This work offers valuable theoretical insights for exploring the potential applications of TM-GaN@MoSSe heterostructures in gas sensing.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"54 \",\"pages\":\"Article 105151\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024013075\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013075","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Detection of harmful gases (NO, NO2) by GaN@MoSSe heterostructures embedded with transition metal (Cu, Fe and Mn) atoms: A DFT study
Monitoring and identifying air pollutants, such as NO and NO2, is crucial due to their detrimental impact on both the environment and human health. This work employs density functional theory (DFT) with the PBE + U functional to investigate the adsorption and sensing performance of NO and NO2 on transition metal (TM)-doped GaN@MoSSe heterostructures. The adsorption energy, charge transfer, electron localization functions, charge density difference, spin density, band gaps and density of states are analyzed. The findings reveal that a transition from physisorption to chemisorption occurs after TM atoms doping. Also, when the surface is embedded with Cu, Fe and Mn atoms, there is a significant improvement in the behavior related to gas adsorption. The bandgap and its variations lead to the change in surface electrical conductivity, thereby affecting the gas sensitivity of the adsorption system. Particularly, the CuGa-GaN@MoSSe and FeGa-GaN@MoSSe systems exhibit improved gas sensitivity toward NO due to their significant band gap reduction. Meanwhile, the CuSe−MoSSe@GaN, CuGa-GaN@MoSSe, FeGa-GaN@MoSSe and MnGa-GaN@MoSSe systems also demonstrate enhanced sensing capabilities for NO2. This work offers valuable theoretical insights for exploring the potential applications of TM-GaN@MoSSe heterostructures in gas sensing.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)