Yoshitaka Aoki, Motoaki Yanaizu, Ai Ohki, Kai Nishimiya, Yoshihiro Kino
{"title":"1 型肌营养不良症细胞模型中 MBNL1 的 CUG 重复 RNA 依赖性蛋白酶体降解","authors":"Yoshitaka Aoki, Motoaki Yanaizu, Ai Ohki, Kai Nishimiya, Yoshihiro Kino","doi":"10.1016/j.bbrc.2024.150729","DOIUrl":null,"url":null,"abstract":"<div><div>Myotonic dystrophy type 1 (DM1) is caused by the expansion of a non-coding CTG repeat in <em>DMPK</em>. CUG-repeat-containing transcripts sequester the splicing regulator MBNL1 into nuclear RNA foci, causing aberrant splicing of many genes. Although the mislocalization of MBNL1 represents a causal event in DM1 pathogenesis, the effect of CUG repeat RNA on the protein level of MBNL1 remains unclear. Using a DM1 model cell line, we found that CUG repeat RNA caused a significant decrease in the protein, but not mRNA levels, of MBNL1. As CUG repeats did not decrease MBNL1 translation, we investigated protein degradation pathways. Although autophagy-related reagents induced little change, proteasome inhibitors partially recovered MBNL1 protein expression levels under conditions of CUG repeat expression and induced a slight, but significant, reversal of splicing dysregulation. MBNL1 was detected in the polyubiquitinated protein fraction, but MBNL1 polyubiquitination was not detected. Moreover, inhibition of the ubiquitin-activating enzyme E1 did not increase MBNL1 levels, suggesting that MBNL1 is a substrate of polyubiquitin-independent proteasomal degradation. These results suggest that CUG-repeat-induced proteasomal degradation partially contributes to the functional decline of MBNL1.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0006291X24012658/pdfft?md5=85fc757b2b410ffa2fd7c6d7a5cc6d20&pid=1-s2.0-S0006291X24012658-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CUG repeat RNA-dependent proteasomal degradation of MBNL1 in a cellular model of myotonic dystrophy type 1\",\"authors\":\"Yoshitaka Aoki, Motoaki Yanaizu, Ai Ohki, Kai Nishimiya, Yoshihiro Kino\",\"doi\":\"10.1016/j.bbrc.2024.150729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Myotonic dystrophy type 1 (DM1) is caused by the expansion of a non-coding CTG repeat in <em>DMPK</em>. CUG-repeat-containing transcripts sequester the splicing regulator MBNL1 into nuclear RNA foci, causing aberrant splicing of many genes. Although the mislocalization of MBNL1 represents a causal event in DM1 pathogenesis, the effect of CUG repeat RNA on the protein level of MBNL1 remains unclear. Using a DM1 model cell line, we found that CUG repeat RNA caused a significant decrease in the protein, but not mRNA levels, of MBNL1. As CUG repeats did not decrease MBNL1 translation, we investigated protein degradation pathways. Although autophagy-related reagents induced little change, proteasome inhibitors partially recovered MBNL1 protein expression levels under conditions of CUG repeat expression and induced a slight, but significant, reversal of splicing dysregulation. MBNL1 was detected in the polyubiquitinated protein fraction, but MBNL1 polyubiquitination was not detected. Moreover, inhibition of the ubiquitin-activating enzyme E1 did not increase MBNL1 levels, suggesting that MBNL1 is a substrate of polyubiquitin-independent proteasomal degradation. These results suggest that CUG-repeat-induced proteasomal degradation partially contributes to the functional decline of MBNL1.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24012658/pdfft?md5=85fc757b2b410ffa2fd7c6d7a5cc6d20&pid=1-s2.0-S0006291X24012658-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24012658\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24012658","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CUG repeat RNA-dependent proteasomal degradation of MBNL1 in a cellular model of myotonic dystrophy type 1
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a non-coding CTG repeat in DMPK. CUG-repeat-containing transcripts sequester the splicing regulator MBNL1 into nuclear RNA foci, causing aberrant splicing of many genes. Although the mislocalization of MBNL1 represents a causal event in DM1 pathogenesis, the effect of CUG repeat RNA on the protein level of MBNL1 remains unclear. Using a DM1 model cell line, we found that CUG repeat RNA caused a significant decrease in the protein, but not mRNA levels, of MBNL1. As CUG repeats did not decrease MBNL1 translation, we investigated protein degradation pathways. Although autophagy-related reagents induced little change, proteasome inhibitors partially recovered MBNL1 protein expression levels under conditions of CUG repeat expression and induced a slight, but significant, reversal of splicing dysregulation. MBNL1 was detected in the polyubiquitinated protein fraction, but MBNL1 polyubiquitination was not detected. Moreover, inhibition of the ubiquitin-activating enzyme E1 did not increase MBNL1 levels, suggesting that MBNL1 is a substrate of polyubiquitin-independent proteasomal degradation. These results suggest that CUG-repeat-induced proteasomal degradation partially contributes to the functional decline of MBNL1.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics